Last active
August 22, 2019 21:24
-
-
Save eddjberry/002988b5edef60ac93ff8dd2a3bb1578 to your computer and use it in GitHub Desktop.
An example of creating a Spark pipeline with sparklyr
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Load packages | |
library(dplyr) | |
library(sparklyr) | |
# Set up connect | |
sc <- spark_connect(master = "local") | |
# Create a Spark DataFrame of mtcars | |
mtcars_sdf <- copy_to(sc, mtcars) | |
# The feature cols | |
feature_cols <- | |
c("mpg", "cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "gear", "carb") | |
# Vector assembler | |
vector_assembler <- | |
ft_vector_assembler( | |
sc, | |
input_cols = feature_cols, | |
output_col = "features") | |
# Estimator | |
estimator <- | |
ml_random_forest_classifier( | |
sc, | |
label_col = "am") | |
# Evaluator | |
evaluator <- | |
ml_binary_classification_evaluator( | |
sc, | |
label_col = "am") | |
# A parameter grid | |
param_grid <- list( | |
random_forest = list( | |
num_trees = list(20, 30, 40), | |
max_depth = list(5, 6), | |
impurity = list("entropy"))) | |
# Create the pipeline | |
pipeline <- ml_pipeline(vector_assembler) %>% | |
ml_cross_validator(estimator, | |
param_grid, | |
evaluator = evaluator, | |
num_folds = 5) | |
# Fit the pipeline | |
pipeline_model <- pipeline %>% | |
ml_fit(mtcars_sdf) | |
# Pull out the CV stage | |
pipeline_model_cv <- ml_stage(pipeline_model, 2) | |
# Print out the avg metrics | |
pipeline_model_cv$avg_metrics_df |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment