Skip to content

Instantly share code, notes, and snippets.

@edgararuiz-zz
Created April 13, 2018 16:48
Show Gist options
  • Save edgararuiz-zz/6a6b7d3b89a99b55e9962d8aff919505 to your computer and use it in GitHub Desktop.
Save edgararuiz-zz/6a6b7d3b89a99b55e9962d8aff919505 to your computer and use it in GitHub Desktop.
---
title: "Immunogenicity - Tiered Approuch to Assess ADA Positive Samples"
output:
flexdashboard::flex_dashboard:
orientation: rows
vertical_layout: fill
params:
screening: "Sample_ADA_Data_05062017_Screening.csv"
confirmatory: "Sample_ADA_Data_05062017_Confirmatory.csv"
screening_cut_point: 200
confirmatory_cut_point: 20
---
```{r setup, include=FALSE}
library(flexdashboard)
library(tidyverse)
library(metricsgraphics)
library(RColorBrewer)
screening <- read_csv(params$screening)
confirmatory <- read_csv(params$confirmatory)
samples <- screening %>%
left_join(confirmatory, by = "Sample_Number") %>%
mutate(Signal_Response_Difference = Signal_Response_No_Drug - Signal_Response_Drug) %>%
mutate(Signal_Response_Divide = Signal_Response_Difference / Signal_Response_No_Drug) %>%
mutate(Percent_Signal_Inhibition_Drug = Signal_Response_Divide * 100) %>%
mutate(Screening_Result_Drug = ifelse(Signal_Response_No_Drug > params$screening_cut_point, "Positive", "Negative")) %>%
mutate(Confirmatory_Result_Drug = ifelse(Percent_Signal_Inhibition_Drug > params$confirmatory_cut_point, "Positive", "Negative")) %>%
mutate(True_Positive = Screening_Result_Drug == Confirmatory_Result_Drug) %>%
mutate_if(is.integer, as.numeric)
samples
```
Row
-----------------------------------------------------------------------
### Observations
```{r}
valueBox(nrow(samples), "Observations", icon = "fa-flask")
```
### Screening
```{r}
valueBox(params$screening_cut_point, "Screening Cut Point", icon = "fa-filter")
```
### Confirmatory
```{r}
valueBox(params$confirmatory_cut_point, "Confirmatory Cut Point", icon = "fa-check")
```
### Confirmatory
```{r}
samples %>%
filter(True_Positive) %>%
tally() %>%
pull %>%
gauge(., min = 0, max = nrow(samples), label = "True Positives")
```
Row {data-width=650}
-----------------------------------------------------------------------
### Drug vs No-Drug Signals
```{r}
samples %>%
mjs_plot(x = Signal_Response_Drug, y = Signal_Response_No_Drug) %>%
mjs_point(color_accessor = True_Positive) %>%
mjs_labs("Signal Response Drug", "Signal Response No Drug") %>%
mjs_add_legend("color_accessor")
```
Row
-----------------------------------------------------------------------
### True Positive - Drug Signals
```{r}
samples %>%
filter(True_Positive) %>%
mjs_plot(x = Signal_Response_Drug) %>%
mjs_histogram()
```
### True Positive - No Drug Signals
```{r}
samples %>%
filter(True_Positive) %>%
mjs_plot(x = Signal_Response_No_Drug) %>%
mjs_histogram()
```
### True Positive - Signal Inhbition
```{r}
samples %>%
filter(True_Positive) %>%
mjs_plot(x = Percent_Signal_Inhibition_Drug) %>%
mjs_histogram()
```
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment