Skip to content

Instantly share code, notes, and snippets.

@edgararuiz-zz
Created October 7, 2017 21:53
Show Gist options
  • Save edgararuiz-zz/d8de6b9574c8e6950e279db1bc0ce8ed to your computer and use it in GitHub Desktop.
Save edgararuiz-zz/d8de6b9574c8e6950e279db1bc0ce8ed to your computer and use it in GitHub Desktop.
library(tfestimators)
library(titanic)
library(dplyr)
library(purrr)
titanic_set <- titanic_train %>%
filter(!is.na(Age))
glimpse(titanic_set)
titanic_input_fn <- function(data) {
input_fn(data,
features = c("Sex",
"Pclass",
"Embarked"),
response = "Survived")
}
cols <- feature_columns(
column_categorical_with_vocabulary_list("Sex", vocabulary_list = unique(titanic_set$Sex) %>% map(~.x)),
column_categorical_with_vocabulary_list("Embarked", vocabulary_list = unique(titanic_set$Embarked) %>% map(~.x)),
column_numeric("Pclass")
)
model <- linear_classifier(feature_columns = cols)
indices <- sample(1:nrow(titanic_set), size = 0.80 * nrow(titanic_set))
train <- titanic_set[indices, ]
test <- titanic_set[-indices, ]
train(model, titanic_input_fn(train))
model_eval <- evaluate(model, titanic_input_fn(test))
model_predict <- predict(model, titanic_input_fn(test))
tensorboard(model$estimator$model_dir, launch_browser = TRUE)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment