-
-
Save eduardszoecs/c4b748eb57b71c027cbfe9714222a918 to your computer and use it in GitHub Desktop.
R functions to compute and plot the first derivative of a spline term in a GAM(M) fitted by `gam()` or `gamm()` in package mgcv
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
################################################ | |
## Functions for derivatives of GAM(M) models ## | |
################################################ | |
Deriv <- function(mod, n = 200, eps = 1e-7, newdata, term) { | |
if(inherits(mod, "gamm")) | |
mod <- mod$gam | |
m.terms <- attr(terms(mod), "term.labels") | |
if(missing(newdata)) { | |
newD <- sapply(model.frame(mod)[, m.terms, drop = FALSE], | |
function(x) seq(min(x), max(x), length = n)) | |
names(newD) <- m.terms | |
} else { | |
newD <- newdata | |
} | |
newDF <- data.frame(newD) ## needs to be a data frame for predict | |
X0 <- predict(mod, newDF, type = "lpmatrix") | |
newDF <- newDF + eps | |
X1 <- predict(mod, newDF, type = "lpmatrix") | |
Xp <- (X1 - X0) / eps | |
Xp.r <- NROW(Xp) | |
Xp.c <- NCOL(Xp) | |
## dims of bs | |
bs.dims <- sapply(mod$smooth, "[[", "bs.dim") - 1 | |
## number of smooth terms | |
t.labs <- attr(mod$terms, "term.labels") | |
## match the term with the the terms in the model | |
if(!missing(term)) { | |
want <- grep(term, t.labs) | |
if(!identical(length(want), length(term))) | |
stop("One or more 'term's not found in model!") | |
t.labs <- t.labs[want] | |
} | |
nt <- length(t.labs) | |
## list to hold the derivatives | |
lD <- vector(mode = "list", length = nt) | |
names(lD) <- t.labs | |
for(i in seq_len(nt)) { | |
Xi <- Xp * 0 | |
want <- grep(t.labs[i], colnames(X1)) | |
Xi[, want] <- Xp[, want] | |
df <- Xi %*% coef(mod) | |
df.sd <- rowSums(Xi %*% mod$Vp * Xi)^.5 | |
lD[[i]] <- list(deriv = df, se.deriv = df.sd) | |
} | |
class(lD) <- "Deriv" | |
lD$gamModel <- mod | |
lD$eps <- eps | |
lD$eval <- newD - eps | |
lD ##return | |
} | |
confint.Deriv <- function(object, term, alpha = 0.05, ...) { | |
l <- length(object) - 3 | |
term.labs <- names(object[seq_len(l)]) | |
if(missing(term)) { | |
term <- term.labs | |
} else { ## how many attempts to get this right!?!? | |
##term <- match(term, term.labs) | |
##term <- term[match(term, term.labs)] | |
term <- term.labs[match(term, term.labs)] | |
} | |
if(any(miss <- is.na(term))) | |
stop(paste("'term'", term[miss], "not a valid model term.")) | |
res <- vector(mode = "list", length = length(term)) | |
names(res) <- term | |
residual.df <- df.residual(object$gamModel) | |
tVal <- qt(1 - (alpha/2), residual.df) | |
##for(i in term.labs[term]) { | |
for(i in term) { | |
upr <- object[[i]]$deriv + tVal * object[[i]]$se.deriv | |
lwr <- object[[i]]$deriv - tVal * object[[i]]$se.deriv | |
res[[i]] <- list(upper = drop(upr), lower = drop(lwr)) | |
} | |
res$alpha = alpha | |
res | |
} | |
signifD <- function(x, d, upper, lower, eval = 0) { | |
miss <- upper > eval & lower < eval | |
incr <- decr <- x | |
want <- d > eval | |
incr[!want | miss] <- NA | |
want <- d < eval | |
decr[!want | miss] <- NA | |
list(incr = incr, decr = decr) | |
} | |
plot.Deriv <- function(x, alpha = 0.05, polygon = TRUE, | |
sizer = FALSE, term, | |
eval = 0, lwd = 3, | |
col = "lightgrey", border = col, | |
ylab, xlab, main, ...) { | |
l <- length(x) - 3 | |
## get terms and check specified (if any) are in model | |
term.labs <- names(x[seq_len(l)]) | |
if(missing(term)) { | |
term <- term.labs | |
} else { | |
term <- term.labs[match(term, term.labs)] | |
} | |
if(any(miss <- is.na(term))) | |
stop(paste("'term'", term[miss], "not a valid model term.")) | |
if(all(miss)) | |
stop("All terms in 'term' not found in model.") | |
l <- sum(!miss) | |
nplt <- n2mfrow(l) | |
tVal <- qt(1 - (alpha/2), df.residual(x$gamModel)) | |
if(missing(ylab)) | |
ylab <- expression(italic(hat(f)*"'"*(x))) | |
if(missing(xlab)) { | |
xlab <- attr(terms(x$gamModel), "term.labels") | |
names(xlab) <- xlab | |
} | |
if (missing(main)) { | |
main <- term | |
names(main) <- term | |
} | |
## compute confidence interval | |
CI <- confint(x, term = term) | |
## plots | |
layout(matrix(seq_len(l), nrow = nplt[1], ncol = nplt[2])) | |
for(i in term) { | |
upr <- CI[[i]]$upper | |
lwr <- CI[[i]]$lower | |
ylim <- range(upr, lwr) | |
plot(x$eval[,i], x[[i]]$deriv, type = "n", | |
ylim = ylim, ylab = ylab, xlab = xlab[i], main = main[i], ...) | |
if(isTRUE(polygon)) { | |
polygon(c(x$eval[,i], rev(x$eval[,i])), | |
c(upr, rev(lwr)), col = col, border = border) | |
} else { | |
lines(x$eval[,i], upr, lty = "dashed") | |
lines(x$eval[,i], lwr, lty = "dashed") | |
} | |
abline(h = 0, ...) | |
if(isTRUE(sizer)) { | |
lines(x$eval[,i], x[[i]]$deriv, lwd = 1) | |
S <- signifD(x[[i]]$deriv, x[[i]]$deriv, upr, lwr, | |
eval = eval) | |
lines(x$eval[,i], S$incr, lwd = lwd, col = "blue") | |
lines(x$eval[,i], S$decr, lwd = lwd, col = "red") | |
} else { | |
lines(x$eval[,i], x[[i]]$deriv, lwd = 2) | |
} | |
} | |
layout(1) | |
invisible(x) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment