Created
February 28, 2025 01:54
-
-
Save edxmorgan/a2025103ade2e61a6ab8dbd4908ee1ba to your computer and use it in GitHub Desktop.
simple Pytensor Op for casadi model
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from pytensor.graph.op import Op | |
from pytensor.graph.basic import Apply | |
import casadi as cs | |
import pytensor.tensor as at | |
import pytensor.compile.function as pt_function | |
from pytensor import grad | |
class CasadiJacOp(Op): | |
""" | |
Helper PyTensor Op that wraps a CasADi Jacobian function. | |
""" | |
itypes = [at.dvector] # 1D double vector input. | |
otypes = [at.dvector] # 1D double vector output. | |
def __init__(self, casadi_jac): | |
self.casadi_jac = casadi_jac | |
def make_node(self, x): | |
x = at.as_tensor_variable(x) | |
return Apply(self, [x], [x.type()]) | |
def perform(self, node, inputs, output_storage): | |
(x_val,) = inputs | |
x_val = np.asarray(x_val) | |
result = self.casadi_jac(x_val)[0] | |
output_storage[0][0] = result | |
class CasadiOpWithJac(Op): | |
""" | |
PyTensor Op that wraps a CasADi function along with its Jacobian. | |
""" | |
itypes = [at.dvector] # 1D double vector input. | |
otypes = [at.dvector] # 1D double vector output. | |
def __init__(self, casadi_func, casadi_jac): | |
self.casadi_func = casadi_func | |
self.casadi_jac = casadi_jac | |
def make_node(self, x): | |
x = at.as_tensor_variable(x) | |
return Apply(self, [x], [x.type()]) | |
def perform(self, node, inputs, output_storage): | |
(x_val,) = inputs | |
x_val = np.asarray(x_val) | |
result = self.casadi_func(x_val)[0] | |
output_storage[0][0] = result | |
def grad(self, inputs, output_grads): | |
(x_val,) = inputs | |
(g_out,) = output_grads | |
# Use the helper op to compute the Jacobian at evaluation time. | |
jacobian_sym = CasadiJacOp(self.casadi_jac)(x_val) | |
return [jacobian_sym * g_out] | |
# Define the CasADi function: f(x) = x^3 and its Jacobian f'(x)=3*x^2. | |
x_sym = cs.MX.sym('x') | |
f_expr = x_sym**3 | |
f_func = cs.Function('f', [x_sym], [f_expr]) | |
jac_expr = cs.jacobian(f_expr, x_sym) | |
jac_func = cs.Function('jac_f', [x_sym], [jac_expr]) | |
# Wrap the CasADi function in a custom PyTensor Op. | |
casadi_op = CasadiOpWithJac(f_func, jac_func) | |
x_pytensor = at.dvector('x') | |
y_pytensor = casadi_op(x_pytensor) | |
f_pytensor = pt_function.function([x_pytensor], y_pytensor) | |
# Build a gradient function (using a scalar cost via sum). | |
cost = at.sum(y_pytensor) | |
grad_y = grad(cost, x_pytensor) | |
f_grad = pt_function.function([x_pytensor], grad_y) | |
# Test the function and its gradient. | |
input_val = np.array([2.0]) | |
print("Output f(x):", f_pytensor(input_val)) # Expected: [8.0] since 2^3 = 8. | |
print("Gradient f'(x):", f_grad(input_val)) # Expected: [12.0] since 3*2^2 = 12. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment