Last active
October 20, 2024 22:02
-
-
Save edxmorgan/fa5a4297657b920b2b3226e7e6efb0db to your computer and use it in GitHub Desktop.
Evaluation of loss functions for discrete time systems with a pulse transfer function B(z)/A(z).
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from numpy.polynomial.polynomial import Polynomial | |
import copy | |
# Define the coefficients of the polynomials A(z) and B(z) | |
# Introduction to Stochastic Control theory. Karl J. Astrom example | |
# A_coeffs = [1, 0.7, 0.5, -0.3] | |
# B_coeffs = [1, 0.3, 0.2, 0.1] | |
# | |
A_coeffs = [1, 0.4, 0.1] | |
B_coeffs = [1, 0.9, 0.8] | |
A_coeffs_reverse = copy.deepcopy(A_coeffs) | |
B_coeffs_reverse = copy.deepcopy(B_coeffs) | |
A_coeffs_reverse.reverse() | |
B_coeffs_reverse.reverse() | |
# Create polynomial objects | |
A = Polynomial(A_coeffs_reverse) | |
B = Polynomial(B_coeffs_reverse) | |
print(f"A(x) = {A}") | |
print(f"B(x) = {B}") | |
# Check the roots of A(z) to ensure all are inside the unit circle | |
roots = A.roots() | |
if np.any(np.abs(roots) >= 1): | |
raise ValueError("A(z) has roots on or outside the unit circle") | |
# Check the leadi2ng coefficient of A(z) | |
if A_coeffs_reverse[-1] <= 0: | |
raise ValueError("The leading coefficient of A(z) is non-positive") | |
# Function to evaluate the integral I based on recursive formulas | |
def evaluate_integral(A_coeffs, B_coeffs): | |
I = 0 | |
order = len(A_coeffs) | |
# print(f"order {order}") | |
A_table = np.zeros(((2*order)-1 , order+1)) | |
B_table = np.zeros(((2*order)-1 , order+1)) | |
A_table[0,0:order] = A_coeffs | |
A_table[1,0:order] = A_coeffs_reverse | |
B_table[0,0:order] = B_coeffs | |
B_table[1,0:order] = A_coeffs_reverse | |
# print(f"table shape {A_table.shape}") | |
I += B_table[0,-2]**2 / A_table[0, 0] | |
for k in range(order): | |
A_table[2*k+1, -1] = A_table[2*k+1, 0] / A_table[2*k, 0] | |
B_table[2*k+1, -1] = B_table[2*k, order-k-1] / B_table[2*k+1, order-k-1] | |
for i in range(order-k-1): | |
A_table[(2*k)+2, i] = A_table[2*k, i] - (A_table[2*k+1, -1] * A_table[2*k+1, i]) | |
B_table[(2*k)+2, i] = B_table[2*k, i] - (B_table[2*k+1, -1] * B_table[2*k+1, i]) | |
I += B_table[(2*k)+2, 0:(order-k-1)][-1]**2 / A_table[(2*k)+2, 0] | |
is_last_k = (2*k)+3 >= A_table.shape[0] | |
if is_last_k: | |
break | |
A_table[(2*k)+3, 0:(order-k-1)] = np.flip(A_table[(2*k)+2, 0:(order-k-1)]) | |
B_table[(2*k)+3, 0:(order-k-1)] = np.flip(A_table[(2*k)+2, 0:(order-k-1)]) | |
print("A-table :") | |
print(A_table) | |
print("\n") | |
print("B-table :") | |
print(B_table) | |
I *= 1/A_table[0, 0] | |
return I | |
# Evaluate the integral | |
I = evaluate_integral(A_coeffs, B_coeffs) | |
print("Evaluated integral:", I) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment