-
-
Save ee08b397/e7a315c77c081d5530f93adf6aaccd18 to your computer and use it in GitHub Desktop.
DotProduct matrix in scala and on spark
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def dotProduct(vector: Array[Int], matrix: Array[Array[Int]]): Array[Int] = { | |
// ignore dimensionality checks for simplicity of example | |
(0 to (matrix(0).size - 1)).toArray.map( colIdx => { | |
val colVec: Array[Int] = matrix.map( rowVec => rowVec(colIdx) ) | |
val elemWiseProd: Array[Int] = (vector zip colVec).map( entryTuple => entryTuple._1 * entryTuple._2 ) | |
elemWiseProd.sum | |
} ) | |
} | |
val A = sc.parallelize(Array(Array(7, 5, 4), Array(0, 3, 2), Array(8, 0, 5), Array(-11, 7, -4), Array(-8, 2, -13), Array(5, 0, -2))) | |
val B = sc.broadcast(Array(Array(100, -80, 75, -105, 30, -50), Array(60, -60, 60, -60, 60, -60), Array(-50, 30, -105, 75, -80, 100))) | |
A.map( row => dotProduct(row, B.value) ).collect | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment