Created
June 23, 2020 21:42
-
-
Save effectfully/1c13b01e17b5a6810e5cca21640d6a93 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# OPTIONS --type-in-type #-} | |
open import Function | |
open import Relation.Binary.PropositionalEquality | |
open import Data.Unit.Base | |
open import Data.Empty | |
open import Data.Product | |
open import Data.Nat.Base | |
{-# NO_POSITIVITY_CHECK #-} | |
mutual | |
data Type : Set where | |
nat : Type | |
type : Type | |
π : (A : Type) -> (⟦ A ⟧ -> Type) -> Type | |
⟦_⟧ : Type -> Set | |
⟦ nat ⟧ = ℕ | |
⟦ type ⟧ = Type | |
⟦ π a b ⟧ = (x : ⟦ a ⟧) -> ⟦ b x ⟧ | |
{-# TERMINATING #-} | |
_≈_ : Type -> Type -> Set | |
_≋_ : ∀ {a} -> ⟦ a ⟧ -> ⟦ a ⟧ -> Set | |
nat ≈ nat = ⊤ | |
type ≈ type = ⊤ | |
π a₁ b₁ ≈ π a₂ b₂ = ∃ λ (eq : a₂ ≡ a₁) -> ∀ {x₁ x₂} -> x₁ ≋ x₂ -> b₁ (subst ⟦_⟧ eq x₁) ≈ b₂ x₂ | |
_ ≈ _ = ⊥ | |
coerce : ∀ {a b} -> a ≈ b -> ⟦ a ⟧ -> ⟦ b ⟧ | |
osubst : ∀ {a x y} -> (P : ⟦ a ⟧ -> Type) -> x ≋ y -> ⟦ P x ⟧ -> ⟦ P y ⟧ | |
_≋_ {nat} n m = n ≡ m | |
_≋_ {type} a b = a ≈ b | |
_≋_ {π a b} f₁ f₂ = ∀ {x₁ x₂} -> (eq : x₁ ≋ x₂) -> osubst b eq (f₁ x₁) ≋ f₂ x₂ | |
postulate orefl : ∀ {a} -> (x : ⟦ a ⟧) -> x ≋ x | |
coerce {nat} {nat} _ n = n | |
coerce {type} {type} _ a = a | |
coerce {π a₁ b₁} {π a₂ b₂} (refl , eq) f = λ x -> coerce (eq (orefl x)) (f x) | |
coerce = undefined where postulate undefined : _ -- just being lazy | |
-- `vrefl P eq` is of the same type as `eq′`, | |
-- but Agda gets confused because `osubst` appears in its own type. | |
osubst P eq = coerce eq′ where postulate eq′ : _ | |
-- Test | |
shallowC42 : ℕ -> ℕ | |
shallowC42 = const 42 | |
deepC42 : ℕ -> ℕ | |
deepC42 0 = 42 | |
deepC42 (suc n) = deepC42 n | |
-- Two functions are equal if they are equal pointwise. I.e. this is functional extensionality. | |
c42-eq : shallowC42 ≋ deepC42 | |
c42-eq {zero } refl = refl | |
c42-eq {suc n} refl = c42-eq {n} refl | |
postulate | |
Favourite : (ℕ -> ℕ) -> Type | |
fave : ⟦ Favourite shallowC42 ⟧ | |
fave′ : ⟦ Favourite deepC42 ⟧ | |
fave′ = osubst Favourite c42-eq fave |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment