Extract fields 2, 4, and 5 from file.txt:
awk '{print $2,$4,$5}' input.txt
Print each line where the 5th field is equal to ‘abc123’:
awk '$5 == "abc123"' file.txt
Print each line where the 5th field is not equal to ‘abc123’:
################################################## | |
## Project: pathfindR | |
## Script purpose: Try to resolve issue 22 | |
## Date: Oct 15, 2019 | |
## Author: Ege Ulgen | |
################################################## | |
options(stringsAsFactors = FALSE) | |
# Create M.musculus KEGG Gene Sets ---------------------------------------- |
FUN <- function(x) { | |
x <- as.integer(x) | |
div <- seq_len(abs(x)) | |
factors <- div[x %% div == 0L] | |
factors <- list(neg = -factors, pos = factors) | |
return(factors) | |
} |
Extract fields 2, 4, and 5 from file.txt:
awk '{print $2,$4,$5}' input.txt
Print each line where the 5th field is equal to ‘abc123’:
awk '$5 == "abc123"' file.txt
Print each line where the 5th field is not equal to ‘abc123’:
multimerge <- function(mypath){ | |
filenames <- list.files(path=mypath, full.names=TRUE) | |
datalist <- lapply(filenames, function(x) read.csv(file=x,header=T)) | |
result_df <- Reduce(function(x,y) merge(x,y), datalist) | |
return(result_df) | |
} | |
### Cleaner and faster | |
# import files | |
files <- list.files(pattern="*.csv") |
class ProgressPercentage(object): | |
''' Progress Class | |
Class for calculating and displaying download progress | |
''' | |
def __init__(self, client, bucket, filename): | |
''' Initialize | |
initialize with: file name, file size and lock. | |
Set seen_so_far to 0. Set progress bar length | |
''' | |
self._filename = filename |
def indexExcelColumnFinder(self, idx): | |
''' Find Excel-style Column Name | |
Given a 0-based index 'idx', returns the | |
corresponding Excel-style column naming | |
(eg. 3 >> D, 26 >> AA, 27 >> AB etc.) | |
''' | |
excelColumnNameList = [] | |
alphabet = map(chr, range(65, 91)) | |
if idx < 26: |
def splitDataFrameList(df,target_column,separator): | |
''' df = dataframe to split, | |
target_column = the column containing the values to split | |
separator = the symbol used to perform the split | |
returns: a dataframe with each entry for the target column separated, with each element moved into a new row. | |
The values in the other columns are duplicated across the newly divided rows. | |
''' | |
def splitListToRows(row,row_accumulator,target_column,separator): | |
split_row = row[target_column].split(separator) | |
for s in split_row: |