Last active
April 3, 2020 08:24
-
-
Save eggie5/5ca00b19c2d7fbeade8d66f50c522793 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import tensorflow as tf | |
import dask.dataframe as dd | |
from dask.distributed import Client, LocalCluster | |
from tensorflow.python.saved_model import loader | |
def encode_factory(sess, export_path:str): | |
"""Loads TF SavedModel and returns a callable""" | |
output_tensor_names = ["input_layer/concat:0"] | |
loader.load(sess, "serve", export_path) | |
def encode(docs): | |
inputs_feed_dict = {"input_example_tensor:0": docs} | |
batch = sess.run(output_tensor_names, feed_dict=inputs_feed_dict) | |
return batch | |
return encode | |
def map_fn(pdf, encoder): | |
encode = encoder() | |
embedded_docs = encode(pdf.docs) #run TF graph on batch of docs | |
pdf["encoded"] = tuple(embedded_docs) #tuple for pandas | |
return pdf | |
#Start Dask scheduler | |
cluster = LocalCluster() | |
client = Client(cluster) | |
#Extract | |
docs_ddf = dd.read_csv("s3://.../data/*.fasttext", names=["docs"]) #fasttext format | |
docs_ddf = docs_ddf.repartition(npartitions=npartitions) | |
docs_ddf = client.persist(docs_ddf) #cache | |
#broadcast TF closure to workers | |
classifier_future = client.scatter(encode_factory, broadcast=True) | |
#Tranform: run the TF model on partitions | |
encoded_ddf = docs_ddf.map_partitions(map_fn, classifier_future) | |
#Load | |
encoded_ddf.to_csv("s3://.../index/v1/") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment