Last active
April 23, 2019 23:47
-
-
Save eggplants/b208fb974401f2acd6710a50d3ac8db2 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#00 | |
import numpy as np | |
data,ans=[],[] | |
with open("00-test-input.txt","r") as inp: | |
for line in [s.strip() for s in inp.readlines()]: | |
data.append(line.split()) | |
data=sum(data,[]) | |
for word in data: | |
ans.append([word,data.count(word)]) | |
for a in np.unique(ans, axis=0): | |
print(" ".join(a)) | |
#01-train | |
import numpy as np | |
data=[] | |
ans=[] | |
with open("01-train-input.txt","r") as inp: | |
for line in inp: | |
data.append(line.split()) | |
data.append(['</s>']) | |
data=sum(data,[]) | |
def one_gram(word,data): | |
return [word,'{:.06f}'.format(data.count(word)/len(data))] | |
for s in np.unique(data): | |
ans.append(one_gram(s,data)) | |
for a in np.unique(ans,axis=0): | |
print("\t".join(a)) | |
#01-test | |
import numpy as np | |
import math | |
import re | |
model=[] | |
data=[] | |
entropy_data=[] | |
with open("01-train-answer.txt","r") as m: | |
for s in m: | |
tmp=re.split(r"\t",s) | |
tmp[1]=float(tmp[1]) | |
model.append(tmp) | |
with open("01-test-input.txt","r") as d: | |
for li in d: | |
data.append(re.findall(r"\S",li.strip())) | |
data.append(['</s>']) | |
data=sum(data,[]) | |
def entropy(model): | |
return -math.log(0.95*model+0.05*1/1000000,2) | |
def coverage(model,data): | |
word=[x[0] for x in model] | |
red=0 | |
for st in set(data)-set(word): | |
red+=data.count(st) | |
return (len(data)-red)/len(data) | |
dic={model[i][0]:model[i][1] for i in range(0,len(model))} | |
for d in data: | |
try: | |
entropy_data.append(entropy(dic[d])) | |
except KeyError: | |
entropy_data.append(entropy(0)) | |
print('entropy = %f'%(sum(entropy_data)/5))import numpy as np | |
import re | |
model=[] | |
data=[] | |
dict={} | |
with open("02-train-input.txt","r") as d: | |
for line in d.readlines(): | |
data.append(line.split()) | |
data.append(['</s>','</s>']) | |
data=sum(data,[]) | |
data.insert(0,'</s>') | |
data.pop(-1) | |
#2-gram | |
print(data) | |
for i in range(1,len(data)): | |
num=0 | |
s_word=[data[i-1],data[i]] | |
for ii in range(0,len(data)): | |
if s_word[0]==data[ii-1] and s_word[1]==data[ii]: | |
num+=1 | |
dict[" ".join(s_word)]=num/data.count(s_word[0]) | |
# print(num,data.count(s_word[0])) | |
#1-gram | |
tmp=data | |
for i in range(0,data.count('</s>')): | |
tmp.remove('</s>') | |
for w in np.unique(data, axis=0): | |
dict[w]=float(data.count(w)/len(tmp)) | |
[print("%s\t%f"%(li[0],li[1])) for li in sorted(dict.items())] | |
print('coverage = %f'%coverage(model,data)) | |
#02-train(unsolveddddddddd) | |
import numpy as np | |
import re | |
model=[] | |
data=[] | |
dict={} | |
with open("02-train-input.txt","r") as d: | |
for line in d.readlines(): | |
data.append(line.split()) | |
data.append(['</s>','</s>']) | |
data=sum(data,[]) | |
data.insert(0,'</s>') | |
data.pop(-1) | |
#2-gram | |
print(data) | |
for i in range(1,len(data)): | |
num=0 | |
s_word=[data[i-1],data[i]] | |
for ii in range(0,len(data)): | |
if s_word[0]==data[ii-1] and s_word[1]==data[ii]: | |
num+=1 | |
dict[" ".join(s_word)]=num/data.count(s_word[0]) | |
# print(num,data.count(s_word[0])) | |
#1-gram | |
tmp=data | |
for i in range(0,data.count('</s>')): | |
tmp.remove('</s>') | |
for w in np.unique(data, axis=0): | |
dict[w]=float(data.count(w)/len(tmp)) | |
[print("%s\t%f"%(li[0],li[1])) for li in sorted(dict.items())] | |
#03 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment