Created
June 12, 2021 02:10
-
-
Save egistli/d1af2f18e6e26aee075ac6af631cd844 to your computer and use it in GitHub Desktop.
Append metadata to TFLite model
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import os | |
from absl import app | |
from absl import flags | |
import tensorflow as tf | |
import flatbuffers | |
# pylint: disable=g-direct-tensorflow-import | |
from tflite_support import metadata_schema_py_generated as _metadata_fb | |
from tflite_support import metadata as _metadata | |
# pylint: enable=g-direct-tensorflow-import | |
FLAGS = flags.FLAGS | |
def define_flags(): | |
flags.DEFINE_string("model_file", None, | |
"Path and file name to the TFLite model file.") | |
flags.DEFINE_string("label_file", None, "Path to the label file.") | |
flags.DEFINE_string("export_directory", None, | |
"Path to save the TFLite model files with metadata.") | |
flags.mark_flag_as_required("model_file") | |
flags.mark_flag_as_required("label_file") | |
flags.mark_flag_as_required("export_directory") | |
class ModelSpecificInfo(object): | |
"""Holds information that is specificly tied to an image classifier.""" | |
def __init__(self, name, version, image_width, image_height, image_min, | |
image_max, mean, std, num_classes): | |
self.name = name | |
self.version = version | |
self.image_width = image_width | |
self.image_height = image_height | |
self.image_min = image_min | |
self.image_max = image_max | |
self.mean = mean | |
self.std = std | |
self.num_classes = num_classes | |
_MODEL_INFO = { | |
"detect.tflite": | |
ModelSpecificInfo( | |
name="MobileNetV1 image classifier", | |
version="v1", | |
image_width=300, | |
image_height=300, | |
image_min=0, | |
image_max=255, | |
mean=[127.5], | |
std=[127.5], | |
num_classes=1) | |
} | |
class MetadataPopulatorForObjectDetection(object): | |
"""Populates the metadata for an image classifier.""" | |
def __init__(self, model_file, model_info, label_file_path): | |
self.model_file = model_file | |
self.model_info = model_info | |
self.label_file_path = label_file_path | |
self.metadata_buf = None | |
def populate(self): | |
"""Creates metadata and then populates it for an image classifier.""" | |
self._create_metadata() | |
self._populate_metadata() | |
def _create_metadata(self): | |
"""Creates the metadata for an image classifier.""" | |
# Creates model info. | |
model_meta = _metadata_fb.ModelMetadataT() | |
model_meta.name = self.model_info.name | |
model_meta.description = ("Equipment.") | |
model_meta.version = self.model_info.version | |
model_meta.author = "TensorFlow" | |
model_meta.license = ("Apache License. Version 2.0 " | |
"http://www.apache.org/licenses/LICENSE-2.0.") | |
# Creates input info. | |
input_meta = _metadata_fb.TensorMetadataT() | |
input_meta.name = "image" | |
input_meta.description = ("The expected image is 300 x 300, with three channels " | |
"(red, blue, and green) per pixel. Each value in the tensor is between" | |
" 0 and 1.") | |
input_meta.content = _metadata_fb.ContentT() | |
input_meta.content.contentProperties = _metadata_fb.ImagePropertiesT() | |
input_meta.content.contentProperties.colorSpace = ( | |
_metadata_fb.ColorSpaceType.RGB) | |
input_meta.content.contentPropertiesType = ( | |
_metadata_fb.ContentProperties.ImageProperties) | |
input_normalization = _metadata_fb.ProcessUnitT() | |
input_normalization.optionsType = ( | |
_metadata_fb.ProcessUnitOptions.NormalizationOptions) | |
input_normalization.options = _metadata_fb.NormalizationOptionsT() | |
input_normalization.options.mean = self.model_info.mean | |
input_normalization.options.std = self.model_info.std | |
input_meta.processUnits = [input_normalization] | |
input_stats = _metadata_fb.StatsT() | |
input_stats.max = [self.model_info.image_max] | |
input_stats.min = [self.model_info.image_min] | |
input_meta.stats = input_stats | |
# Creates output info. | |
output_location_meta = _metadata_fb.TensorMetadataT() | |
output_location_meta.name = "location" | |
output_location_meta.description = "The locations of the detected boxes." | |
output_location_meta.content = _metadata_fb.ContentT() | |
output_location_meta.content.contentPropertiesType = (_metadata_fb.ContentProperties.BoundingBoxProperties) | |
output_location_meta.content.contentProperties = (_metadata_fb.BoundingBoxPropertiesT()) | |
output_location_meta.content.contentProperties.index = [1, 0, 3, 2] | |
output_location_meta.content.contentProperties.type = (_metadata_fb.BoundingBoxType.BOUNDARIES) | |
output_location_meta.content.contentProperties.coordinateType = (_metadata_fb.CoordinateType.RATIO) | |
output_location_meta.content.range = _metadata_fb.ValueRangeT() | |
output_location_meta.content.range.min = 2 | |
output_location_meta.content.range.max = 2 | |
output_class_meta = _metadata_fb.TensorMetadataT() | |
output_class_meta.name = "category" | |
output_class_meta.description = "The categories of the detected boxes." | |
output_class_meta.content = _metadata_fb.ContentT() | |
output_class_meta.content.contentPropertiesType = ( | |
_metadata_fb.ContentProperties.FeatureProperties) | |
output_class_meta.content.contentProperties = ( | |
_metadata_fb.FeaturePropertiesT()) | |
output_class_meta.content.range = _metadata_fb.ValueRangeT() | |
output_class_meta.content.range.min = 2 | |
output_class_meta.content.range.max = 2 | |
label_file = _metadata_fb.AssociatedFileT() | |
label_file.name = os.path.basename(self.label_file_path) | |
label_file.description = "Label of objects that this model can recognize." | |
label_file.type = _metadata_fb.AssociatedFileType.TENSOR_VALUE_LABELS | |
output_class_meta.associatedFiles = [label_file] | |
output_score_meta = _metadata_fb.TensorMetadataT() | |
output_score_meta.name = "score" | |
output_score_meta.description = "The scores of the detected boxes." | |
output_score_meta.content = _metadata_fb.ContentT() | |
output_score_meta.content.contentPropertiesType = ( | |
_metadata_fb.ContentProperties.FeatureProperties) | |
output_score_meta.content.contentProperties = ( | |
_metadata_fb.FeaturePropertiesT()) | |
output_score_meta.content.range = _metadata_fb.ValueRangeT() | |
output_score_meta.content.range.min = 2 | |
output_score_meta.content.range.max = 2 | |
output_number_meta = _metadata_fb.TensorMetadataT() | |
output_number_meta.name = "number of detections" | |
output_number_meta.description = "The number of the detected boxes." | |
output_number_meta.content = _metadata_fb.ContentT() | |
output_number_meta.content.contentPropertiesType = ( | |
_metadata_fb.ContentProperties.FeatureProperties) | |
output_number_meta.content.contentProperties = ( | |
_metadata_fb.FeaturePropertiesT()) | |
# Creates subgraph info. | |
#group = _metadata_fb.TensorGroupT() | |
#group.name = "detection result" | |
#group.tensorNames = [ output_location_meta.name, output_class_meta.name, output_score_meta.name ] | |
subgraph = _metadata_fb.SubGraphMetadataT() | |
subgraph.inputTensorMetadata = [input_meta] | |
subgraph.outputTensorMetadata = [output_location_meta, output_class_meta, output_score_meta,output_number_meta] | |
#subgraph.outputTensorGroups = [group] | |
model_meta.subgraphMetadata = [subgraph] | |
b = flatbuffers.Builder(0) | |
b.Finish( | |
model_meta.Pack(b), | |
_metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER) | |
self.metadata_buf = b.Output() | |
def _populate_metadata(self): | |
"""Populates metadata and label file to the model file.""" | |
populator = _metadata.MetadataPopulator.with_model_file(self.model_file) | |
populator.load_metadata_buffer(self.metadata_buf) | |
populator.load_associated_files([self.label_file_path]) | |
populator.populate() | |
def main(_): | |
model_file = FLAGS.model_file | |
model_basename = os.path.basename(model_file) | |
if model_basename not in _MODEL_INFO: | |
raise ValueError( | |
"The model info for, {0}, is not defined yet.".format(model_basename)) | |
export_model_path = os.path.join(FLAGS.export_directory, model_basename) | |
# Copies model_file to export_path. | |
tf.io.gfile.copy(model_file, export_model_path, overwrite=True) | |
# Generate the metadata objects and put them in the model file | |
populator = MetadataPopulatorForObjectDetection( | |
export_model_path, _MODEL_INFO.get(model_basename), FLAGS.label_file) | |
populator.populate() | |
# Validate the output model file by reading the metadata and produce | |
# a json file with the metadata under the export path | |
displayer = _metadata.MetadataDisplayer.with_model_file(export_model_path) | |
export_json_file = os.path.join(FLAGS.export_directory, | |
os.path.splitext(model_basename)[0] + ".json") | |
json_file = displayer.get_metadata_json() | |
with open(export_json_file, "w") as f: | |
f.write(json_file) | |
print("Finished populating metadata and associated file to the model:") | |
print(model_file) | |
print("The metadata json file has been saved to:") | |
print(export_json_file) | |
print("The associated file that has been been packed to the model is:") | |
print(displayer.get_packed_associated_file_list()) | |
if __name__ == "__main__": | |
define_flags() | |
app.run(main) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment