Created
August 13, 2024 12:27
-
-
Save egouldo/1ac3755adb57867e4841e2cf81515367 to your computer and use it in GitHub Desktop.
Extracts and tidies meta-analytic model-estimated effect-sizes and generates forest plots for *Eucalyptus* and blue tit datasets
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# remotes::install_github("egouldo/ManyEcoEvo") # install latest ManyEcoEvo | |
library(tidyverse) | |
library(ManyEcoEvo) | |
library(metafor) | |
library(remotes) | |
# ------ define data extraction / plotting functions ------ | |
get_forest_plot_data <- function(model){ | |
model %>% | |
broom.mixed::tidy(conf.int = TRUE, include_studies = TRUE) %>% | |
dplyr::mutate( | |
point_shape = | |
ifelse(stringr::str_detect(term, "overall"), | |
"diamond", | |
"circle"), | |
term = | |
forcats::fct_reorder(term, | |
estimate) %>% | |
forcats::fct_reorder(., | |
point_shape, | |
.desc = TRUE), | |
parameter_type = case_when(str_detect(term, "overall") ~ "mean", | |
TRUE ~ "study"), | |
meta_analytic_mean = pull(., estimate, type) %>% | |
keep_at(at = "summary")) %>% | |
select(-type, Parameter = term, everything()) | |
} | |
plot_forest <- function(data, intercept = TRUE, MA_mean = TRUE){ | |
if (MA_mean == FALSE){ | |
data <- filter(data, Parameter != "overall") | |
} | |
p <- ggplot(data, aes(y = estimate, | |
x = Parameter, | |
ymin = conf.low, | |
ymax = conf.high, | |
shape = point_shape, | |
colour = parameter_type)) + | |
geom_pointrange(fatten = 2) + | |
ggforestplot::theme_forest() + | |
theme(axis.line = element_line(linewidth = 0.10, colour = "black"), | |
axis.line.y = element_blank(), | |
text = element_text(family = "Helvetica")#, | |
# axis.text.y = element_blank() | |
) + | |
guides(shape = guide_legend(title = NULL), | |
colour = guide_legend(title = NULL)) + | |
coord_flip() + | |
ylab(bquote(Standardised~Effect~Size~Z[r])) + | |
xlab(element_blank()) + | |
# scale_y_continuous(breaks = c(-4,-3,-2,-1,0,1), | |
# minor_breaks = seq(from = -4.5, to = 1.5, by = 0.5)) + | |
NatParksPalettes::scale_color_natparks_d("Glacier") | |
if(intercept == TRUE){ | |
p <- p + geom_hline(yintercept = 0) | |
} | |
if(MA_mean == TRUE){ | |
p <- p + geom_hline(aes(yintercept = meta_analytic_mean), | |
data = data, | |
colour = "#01353D", | |
linetype = "dashed") | |
} | |
return(p) | |
} | |
# ----- Load Data ----- | |
data("ManyEcoEvo_viz") | |
ManyEcoEvo_viz %>% dim() | |
ManyEcoEvo_viz %>% head() | |
# ----- Extract Data and Plot ----- | |
# dplyr::filter() arguments | |
filter_subsets <- rlang::exprs( | |
exclusion_set == "complete", | |
expertise_subset == "All", | |
collinearity_subset == "All", | |
publishable_subset == "All", | |
estimate_type == "Zr", | |
model_name == "MA_mod" | |
) | |
ManyEcoEvo_viz %>% | |
ungroup %>% | |
dplyr::filter(!!!filter_subsets) %>% | |
pull(model, dataset) %>% | |
map(get_forest_plot_data) %>% | |
map(plot_forest) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment