Created
June 4, 2019 18:28
-
-
Save ehoppmann/d5ca1508b0a467ee7d3c86ebcd4969de to your computer and use it in GitHub Desktop.
Calculate highest posterior density (HPD) of array for given alpha. From Bayesian Analysis with Python: https://github.com/aloctavodia/BAP/blob/master/first_edition/code/Chp1/hpd.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import division | |
import numpy as np | |
import scipy.stats.kde as kde | |
def hpd_grid(sample, alpha=0.05, roundto=2): | |
"""Calculate highest posterior density (HPD) of array for given alpha. | |
The HPD is the minimum width Bayesian credible interval (BCI). | |
The function works for multimodal distributions, returning more than one mode | |
Parameters | |
---------- | |
sample : Numpy array or python list | |
An array containing MCMC samples | |
alpha : float | |
Desired probability of type I error (defaults to 0.05) | |
roundto: integer | |
Number of digits after the decimal point for the results | |
Returns | |
---------- | |
hpd: array with the lower | |
""" | |
sample = np.asarray(sample) | |
sample = sample[~np.isnan(sample)] | |
# get upper and lower bounds | |
l = np.min(sample) | |
u = np.max(sample) | |
density = kde.gaussian_kde(sample) | |
x = np.linspace(l, u, 2000) | |
y = density.evaluate(x) | |
#y = density.evaluate(x, l, u) waitting for PR to be accepted | |
xy_zipped = zip(x, y/np.sum(y)) | |
xy = sorted(xy_zipped, key=lambda x: x[1], reverse=True) | |
xy_cum_sum = 0 | |
hdv = [] | |
for val in xy: | |
xy_cum_sum += val[1] | |
hdv.append(val[0]) | |
if xy_cum_sum >= (1-alpha): | |
break | |
hdv.sort() | |
diff = (u-l)/20 # differences of 5% | |
hpd = [] | |
hpd.append(round(min(hdv), roundto)) | |
for i in range(1, len(hdv)): | |
if hdv[i]-hdv[i-1] >= diff: | |
hpd.append(round(hdv[i-1], roundto)) | |
hpd.append(round(hdv[i], roundto)) | |
hpd.append(round(max(hdv), roundto)) | |
ite = iter(hpd) | |
hpd = list(zip(ite, ite)) | |
modes = [] | |
for value in hpd: | |
x_hpd = x[(x > value[0]) & (x < value[1])] | |
y_hpd = y[(x > value[0]) & (x < value[1])] | |
modes.append(round(x_hpd[np.argmax(y_hpd)], roundto)) | |
return hpd, x, y, modes |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment