Created
January 17, 2022 20:40
-
-
Save eileen-code4fun/9923488ac5945e7f0e150749f4d529e3 to your computer and use it in GitHub Desktop.
NLP Classification
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow_datasets as tfds | |
import tensorflow as tf | |
dataset, info = tfds.load('imdb_reviews', with_info=True, | |
as_supervised=True) | |
train_dataset, test_dataset = dataset['train'], dataset['test'] | |
def experiment(train, test): | |
VOCAB_SIZE = 1000 | |
encoder = tf.keras.layers.experimental.preprocessing.TextVectorization(max_tokens=VOCAB_SIZE, standardize=None) | |
encoder.adapt(train_dataset.map(lambda text, label: text)) | |
model = tf.keras.Sequential([ | |
encoder, | |
tf.keras.layers.Embedding( | |
input_dim=len(encoder.get_vocabulary()), | |
output_dim=64, | |
# Use masking to handle the variable sequence lengths | |
mask_zero=True), | |
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64)), | |
tf.keras.layers.Dense(64, activation='relu'), | |
tf.keras.layers.Dense(1) | |
]) | |
model.compile(loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), | |
optimizer=tf.keras.optimizers.Adam(1e-4), | |
metrics=['accuracy']) | |
history = model.fit(train, epochs=20, | |
validation_data=test, | |
validation_steps=30) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment