Skip to content

Instantly share code, notes, and snippets.

@eileen-code4fun
Created January 6, 2022 14:24
Show Gist options
  • Save eileen-code4fun/ad67c1e5561ffae63cfed2589c4d4e66 to your computer and use it in GitHub Desktop.
Save eileen-code4fun/ad67c1e5561ffae63cfed2589c4d4e66 to your computer and use it in GitHub Desktop.
Load Cora Dataset
import dgl
import tensorflow as tf
dataset = dgl.data.CoraGraphDataset()
# A DGL dataset may contain multiple graphs.
# In the case of Cora, there is only one graph.
g = dataset[0]
# g.ndata is a dictionary of nodes related data.
# Prepare the training, validation, and test datasets.
train_ds = tf.data.Dataset.zip((
tf.data.Dataset.from_tensor_slices(g.ndata['feat'][g.ndata['train_mask']]),
tf.data.Dataset.from_tensor_slices(g.ndata['label'][g.ndata['train_mask']])
)).batch(64)
val_ds = tf.data.Dataset.zip((
tf.data.Dataset.from_tensor_slices(g.ndata['feat'][g.ndata['val_mask']]),
tf.data.Dataset.from_tensor_slices(g.ndata['label'][g.ndata['val_mask']])
)).batch(64)
test_ds = tf.data.Dataset.zip((
tf.data.Dataset.from_tensor_slices(g.ndata['feat'][g.ndata['test_mask']]),
tf.data.Dataset.from_tensor_slices(g.ndata['label'][g.ndata['test_mask']])
)).batch(64)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment