Created
June 11, 2021 14:03
-
-
Save eileen-code4fun/d313de50d86d46b320684b7d920c758a to your computer and use it in GitHub Desktop.
CIFAR10 PCA
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from sklearn import decomposition | |
# Reuse the same ds from Tensorflow Dataset | |
train_data = list(ds['train'].map(lambda x, y: tf.reshape(x, [-1]))) | |
test_data = list(ds['test'].map(lambda x, y: tf.reshape(x, [-1]))) | |
X = tf.concat([train_data, test_data], 0).numpy() | |
print(np.shape(X)) | |
# Output: (60000, 3072) | |
pca = decomposition.PCA(n_components=300) | |
pca.fit(X) | |
X = pca.transform(X) | |
print(np.shape(X)) | |
# Output: (60000, 300) | |
train_labels = list(ds['train'].map(lambda x, y: y)) | |
test_labels = list(ds['test'].map(lambda x, y: y)) | |
labels = tf.concat([train_labels, test_labels], 0).numpy() | |
def csv_dump(X, labels, filename): | |
with open(filename, 'w') as f: | |
for x, label in zip(X, labels): | |
f.write('{}'.format(label)) | |
f.write(','.join(str(e) for e in x)) | |
f.write('\n') | |
csv_dump(X[:50000, :], labels[:50000], 'train_pca.csv') | |
csv_dump(X[50000:, :], labels[50000:], 'test_pca.csv') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment