Created
August 19, 2011 11:29
-
-
Save einblicker/1156613 to your computer and use it in GitHub Desktop.
CoPL problem 52
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| |- let rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1) in | |
| sum (fun x -> x * x) 2 | |
| evalto 5 | |
| by E-LetRec { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)] |- | |
| ((sum (fun x -> x * x)) 2) | |
| evalto 5 | |
| by E-App { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)] |- | |
| (sum (fun x -> x * x)) evalto (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x])[ | |
| fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)] | |
| by E-AppRec { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)] |- | |
| sum evalto ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)] | |
| by E-Var1 {}; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)] |- | |
| (fun x -> x * x) evalto (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x] | |
| by E-Fun {}; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x] |- | |
| fun n -> if n < 1 then 0 else f n + sum f (n - 1) | |
| evalto (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x])[ | |
| fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)] | |
| by E-Fun {} | |
| }; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)] |- | |
| 2 evalto 2 by E-Int {}; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 2 |- | |
| if n < 1 then 0 else f n + sum f (n - 1) | |
| evalto 5 | |
| by E-IfF { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 2 |- | |
| n < 1 evalto false | |
| by E-Lt { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 2 |- | |
| n evalto 2 by E-Var1 {}; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 2 |- | |
| 1 evalto 1 by E-Int {}; | |
| 2 less than 1 is false by B-Lt {} | |
| }; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 2 |- | |
| f n + sum f (n - 1) | |
| evalto 5 | |
| by E-Plus { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 2 |- | |
| f n evalto 4 | |
| by E-App { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 2 |- | |
| f evalto (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x] | |
| by E-Var2 { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x] |- | |
| f evalto (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x] | |
| by E-Var1 {} | |
| }; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 2 |- | |
| n evalto 2 by E-Var1 {}; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| x = 2 |- | |
| x * x evalto 4 by E-Times { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| x = 2 |- | |
| x evalto 2 by E-Var1 {}; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| x = 2 |- | |
| x evalto 2 by E-Var1 {}; | |
| 2 times 2 is 4 by B-Times {} | |
| } | |
| }; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 2 |- | |
| ((sum f) (n - 1)) | |
| evalto 1 | |
| by E-App { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 2 |- | |
| sum f evalto (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x])[ | |
| fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)] | |
| by E-AppRec { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 2 |- | |
| sum evalto ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)] | |
| by E-Var2 { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x] |- | |
| sum evalto ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)] | |
| by E-Var2 { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)] |- | |
| sum evalto ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)] | |
| by E-Var1 {} | |
| } | |
| }; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 2 |- | |
| f evalto (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x] | |
| by E-Var2 { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x] |- | |
| f evalto (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x] | |
| by E-Var1 {} | |
| }; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x] |- | |
| fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1) | |
| evalto (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x])[ | |
| fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)] | |
| by E-Fun {} | |
| }; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 2 |- | |
| n - 1 evalto 1 | |
| by E-Minus { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 2 |- | |
| n evalto 2 by E-Var1 {}; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 2 |- | |
| 1 evalto 1 by E-Int {}; | |
| 2 minus 1 is 1 by B-Minus {} | |
| }; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 1 |- | |
| if n < 1 then 0 else f n + sum f (n - 1) | |
| evalto 1 | |
| by E-IfF { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 1 |- | |
| n < 1 evalto false | |
| by E-Lt { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 1 |- | |
| n evalto 1 | |
| by E-Var1 {}; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 1 |- | |
| 1 evalto 1 | |
| by E-Int {}; | |
| 1 less than 1 is false by B-Lt {} | |
| }; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 1 |- | |
| f n + sum f (n - 1) | |
| evalto 1 | |
| by E-Plus { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 1 |- | |
| f n evalto 1 | |
| by E-App { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 1 |- | |
| f evalto (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x] | |
| by E-Var2 { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x] |- | |
| f evalto (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x] | |
| by E-Var1 {} | |
| }; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 1 |- | |
| n evalto 1 | |
| by E-Var1 {}; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| x = 1 |- | |
| x * x evalto 1 | |
| by E-Times { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| x = 1 |- | |
| x evalto 1 by E-Var1 {}; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| x = 1 |- | |
| x evalto 1 by E-Var1 {}; | |
| 1 times 1 is 1 by B-Times {} | |
| } | |
| }; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 1 |- | |
| ((sum f) (n - 1)) evalto 0 | |
| by E-App { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 1 |- | |
| sum f evalto (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x])[ | |
| fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)] | |
| by E-AppRec { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 1 |- | |
| sum evalto ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)] | |
| by E-Var2 { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x] |- | |
| sum evalto ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)] | |
| by E-Var2 { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)] |- | |
| sum evalto ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)] | |
| by E-Var1 {} | |
| } | |
| }; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 1 |- | |
| f evalto (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x] | |
| by E-Var2 { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x] |- | |
| f evalto (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x] | |
| by E-Var1 {} | |
| }; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x] |- | |
| fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1) | |
| evalto (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x])[ | |
| fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)] | |
| by E-Fun {} | |
| }; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 1 |- | |
| n - 1 evalto 0 | |
| by E-Minus { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 1 |- | |
| n evalto 1 | |
| by E-Var1 {}; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 1 |- | |
| 1 evalto 1 | |
| by E-Int {}; | |
| 1 minus 1 is 0 by B-Minus {} | |
| }; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 0 |- | |
| if n < 1 then 0 else f n + sum f (n - 1) | |
| evalto 0 | |
| by E-IfT { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 0 |- | |
| n < 1 evalto true | |
| by E-Lt { | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 0 |- | |
| n evalto 0 by E-Var1 {}; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 0 |- | |
| 1 evalto 1 by E-Int {}; | |
| 0 less than 1 is true by B-Lt {} | |
| }; | |
| sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)], | |
| f = (sum = ()[rec sum = fun f -> fun n -> | |
| if n < 1 then 0 else f n + sum f (n - 1)])[fun x -> x * x], | |
| n = 0 |- | |
| 0 evalto 0 by E-Int {} | |
| } | |
| }; | |
| 1 plus 0 is 1 by B-Plus {} | |
| } | |
| } | |
| }; | |
| 4 plus 1 is 5 by B-Plus {} | |
| } | |
| } | |
| } | |
| } | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment