Created
November 4, 2015 23:20
-
-
Save eirenik0/155a862bd39eedc3ea7c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import networkx as nx | |
import pylab | |
from collections import namedtuple | |
K_d = 1.1 # коефициент неучтенных работ | |
K_vn = 1.1 # коефициент производительности труда | |
# t_P_j = max(t_p_i + T_ij) | |
T_ij_values = { | |
(0,1): 3, | |
(1,2): 7, | |
(1,3): 4, | |
(2,5): 4, | |
(3,5): 3, | |
(5,12): 4, | |
(12,15): 6, | |
(12,14): 2, | |
(1,4): 6, | |
(9,11): 4, | |
(15,16): 3, | |
(3,13): (48,2), | |
(13,14): (80,2), | |
(14,15): (160,4), | |
(11,15): (48,3), | |
(4,6): (144,6), | |
(4,7): (16,2), | |
(6,8): (32,2), | |
(6,9): (64,4), | |
(8,9): (192,4), | |
(4,7): (64,2), | |
(7,10): (160,2), | |
(10,11): (64,2), | |
(3,6): 0, | |
(9, 10): 0 | |
} | |
def process_laboriousness(items): | |
T_ij = lambda t_ij, n_ij: int((t_ij*K_d)/(n_ij*K_vn)) # продолжительность работы в раб днях | |
tmp = [] | |
for key in items: | |
if key==-1: break | |
current_val = T_ij_values[key] | |
if isinstance(current_val, tuple): | |
tmp.append((*key, T_ij(*current_val))) | |
else: | |
tmp.append((*key, current_val)) | |
return tmp | |
def generate_nodes(DG): | |
Node = namedtuple('Node', 't_p R_i t_n i') | |
nodes = [] | |
for key, pred in DG.pred.items(): | |
if not pred: | |
nodes.append(Node(t_p=0, R_i=0, t_n=0, i=0)) | |
continue | |
t_p = max(p['weight']+nodes[k].t_p for k,p in pred.items()) # t_p_j + t_p_i | |
node = Node(t_p=t_p, R_i=0, t_n=0,i=key,) | |
nodes.append(node) | |
for key, pred in sorted(DG.adj.items(), reverse=True): | |
if not pred: | |
node = nodes[key] | |
nodes[key] = Node(t_p=node.t_p, R_i=0, t_n=node.t_p, i=key) | |
continue | |
t_n = min(nodes[k].t_n-p['weight'] for k,p in pred.items()) # t_n_j - t_n_i | |
node = nodes[key] | |
nodes[key] = Node(t_p=node.t_p, R_i=t_n - node.t_p, t_n=t_n,i=key,) | |
return nodes | |
if __name__=='__main__': | |
weighted_edges = process_laboriousness(T_ij_values) | |
DG=nx.DiGraph(t_p=0, R_i=0, t_n=0, i=0) | |
DG.add_weighted_edges_from(weighted_edges) | |
elarge=[(u,v) for (u,v,d) in DG.edges(data=True) if d['weight'] >= 1] | |
esmall=[(u,v) for (u,v,d) in DG.edges(data=True) if d['weight'] ==0] | |
pos=nx.pygraphviz_layout(DG) | |
pylab.figure(1,figsize=(30,30)) | |
# nodes | |
nx.draw_networkx_nodes(DG,pos,node_size=2300) | |
# edges | |
nx.draw_networkx_edges(DG,pos,edgelist=elarge, | |
width=2) | |
nx.draw_networkx_edges(DG,pos,edgelist=esmall, | |
width=2,alpha=0.5,edge_color='b',style='dashed') | |
# labels | |
nodes = generate_nodes(DG) | |
pattern = ''' {R_i}\n{t_p} X {t_n}\n {i} ''' | |
labels = {n.i: pattern.format(R_i=n.t_n-n.t_p, t_n=n.t_n, i=n.i, t_p=n.t_p) for n in nodes} | |
nx.draw_networkx_labels(DG,pos,labels,font_size=14,font_family='sans-serif', font_color='blue') | |
# edge labels | |
pattern = '{weight} \n ({R_p},{R_1},{R_2},{R_free_ij})' | |
edge_labels = {} | |
for i,j,d in DG.edges(data=True): | |
# R_p = t_n_j - t_p_i - T_ij | |
# R_1 = t_n_j - t_n_i - T_ij | |
# R_2 = t_p_j - t_p_i - T_ij | |
# R_free_ij = t_p_j - t_n_i - T_ij | |
R_p = nodes[j].t_n - nodes[i].t_p - d['weight'] | |
R_1 = nodes[j].t_n - nodes[i].t_n - d['weight'] | |
R_2 = nodes[j].t_p - nodes[i].t_p - d['weight'] | |
R_free_ij = nodes[j].t_p - nodes[i].t_n - d['weight'] | |
edge_labels[(i,j)] = pattern.format(weight=d['weight'], R_p=R_p,R_1=R_1,R_2=R_2,R_free_ij=R_free_ij) | |
nx.draw_networkx_edge_labels(DG,pos,edge_labels=edge_labels) | |
pylab.axis('off') | |
pylab.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment