Skip to content

Instantly share code, notes, and snippets.

@ekmett
Created December 6, 2024 17:32
Show Gist options
  • Save ekmett/925eeea8fa7f35d55a0d2cac01c099f4 to your computer and use it in GitHub Desktop.
Save ekmett/925eeea8fa7f35d55a0d2cac01c099f4 to your computer and use it in GitHub Desktop.
fast fibonacci transform (based on code in github.com/ekmett/fractions)
{-# language DefaultSignatures #-}
-- @Fib a b :: Fib r@ denotes @aΦ + b@ ∈ r(Φ)
data Fib a = Fib !a !a
deriving (Show, Functor, Foldable, Traversable, Eq)
instance (Num a, Ord a) => Ord (Fib a) where
compare (Fib a b) (Fib c d) = case compare a c of
LT | b <= d -> LT
| otherwise -> go compare (a-c) (b-d)
EQ -> compare b d
GT | b >= d -> GT
| otherwise -> go (flip compare) (a-c) (b-d)
where
go k e f = k (sq (e+2*f)) (5*sq e)
sq x = x*x
instance Num a => Num (Fib a) where
Fib a b + Fib c d = Fib (a + c) (b + d)
-- Φ^2 = Φ+1, so (aΦ+b)(cΦ+d) = ac(Φ+1) + (ad+bc)Φ + bd == (ac+ad+bc)Φ + (ac+bd)
Fib a b * Fib c d = Fib (a*(c + d) + b*c) (a*c + b*d)
Fib a b - Fib c d = Fib (a - c) (b - d)
negate (Fib a b) = Fib (negate a) (negate b)
abs x = x
signum _ = Fib 0 1
fromInteger n = Fib 0 (fromInteger n)
instance Fractional a => Fractional (Fib a) where
recip (Fib a b) = Fib (-a/d) ((a+b)/d) where
d = b*b + a*b - a*a
fromRational r = Fib 0 (fromRational r)
instance Applicative Fib where
pure a = Fib a a
Fib a b <*> Fib c d = Fib (a c) (b d)
instance Monad Fib where
return = pure
Fib a b >>= f = Fib a' b' where
Fib a' _ = f a
Fib _ b' = f b
class (Eq a, Num a) => Golden a where
phi :: a
default phi :: Floating a => a
phi = (1 + sqrt 5)*0.5
sqrt5 :: a
sqrt5 = 2*phi - 1
iphi :: a
iphi = phi - 1
instance (Eq a, Num a) => Golden (Fib a) where
phi = Fib 1 0
instance Golden Float
instance Golden Double
unfib :: Golden a => Fib a -> a
unfib (Fib a b) = a*phi + b
getPhi :: Fib a -> a
getPhi (Fib a _) = a
-- fast fibonacci transform
fib :: (Eq a, Num a) => Integer -> a
fib n
| n >= 0 = getPhi (phi ^ n)
| otherwise = getPhi (iphi ^ negate n)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment