Created
April 3, 2021 01:48
-
-
Save ekmett/db43c1489294876f226f61458ce27de4 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{- cabal: | |
build-depends: base, constraints | |
-} | |
{-# language TypeFamilies, TypeFamilyDependencies, ConstraintKinds, ScopedTypeVariables, NoStarIsType, TypeOperators, TypeApplications, GADTs, AllowAmbiguousTypes, FunctionalDependencies, UndecidableSuperClasses, UndecidableInstances, FlexibleInstances, QuantifiedConstraints, BlockArguments, RankNTypes, FlexibleContexts, StandaloneKindSignatures, DefaultSignatures #-} | |
-- ⊷, ≕, =∘, =◯ These choices all look like something out of Star Trek, so let's boldly go... | |
import Data.Constraint hiding (top, bottom, Bottom) | |
import Data.Kind | |
import Data.Some | |
import Data.Void | |
import Unsafe.Coerce | |
class (Not p ~ Never p) => Never p where | |
never :: p => Dict r | |
class (Prop (Not p), Not (Not p) ~ p) => Prop (p :: Constraint) where | |
type Not p :: Constraint | |
type Not p = Never p | |
contradiction :: (p, Not p) => Dict r | |
default contradiction :: (Not p ~ Never p, p, Not p) => Dict r | |
contradiction = never @p | |
instance (Prop p, Not p ~ Never p) => Prop (Never p) where | |
type Not (Never p) = p | |
contradiction = never @p | |
instance Prop (Bounded a) | |
instance Prop (Num a) | |
instance Never (Bounded Void) where never = absurd minBound | |
instance Never (Num Void) where never = absurd (fromInteger 0) | |
class (p, q) => p * q | |
instance (p, q) => p * q | |
class (Not p => q, Not q => p) => p ⅋ q | |
instance (Not p => q, Not q => p) => p ⅋ q | |
instance (Prop p, Prop q) => Prop (p ⅋ q) where | |
type Not (p ⅋ q) = Not p * Not q | |
contradiction = contradiction @p | |
instance (Prop p, Prop q) => Prop (p * q) where | |
type Not (p * q) = Not p ⅋ Not q | |
contradiction = contradiction @p | |
infixr 0 ⊸ | |
type (⊸) p = (⅋) (Not p) | |
fun :: (Prop p, Prop q, p) => (p ⊸ q) :- q | |
fun = Sub Dict | |
contra :: (Prop p, Prop q, Not q) => (p ⊸ q) :- Not p | |
contra = Sub Dict | |
class (p, q) => p & q | |
instance (p, q) => p & q | |
class p + q where | |
runEither :: (p => Dict r) -> (q => Dict r) -> Dict r | |
data G p q k = G ((forall r. (p => Dict r) -> (q => Dict r) -> Dict r)) | |
-- (Eq a + Ord [a]) :- Eq [a] | |
inl :: forall p q. p :- (p + q) | |
inl = Sub let | |
go :: (p => Dict r) -> (q => Dict r) -> Dict r | |
go pr _ = pr | |
in unsafeCoerce (G go) | |
inr :: forall q p. q :- (p + q) | |
inr = Sub let | |
go :: (p => Dict r) -> (q => Dict r) -> Dict r | |
go _ qr = qr | |
in unsafeCoerce (G go) | |
instance (Prop p, Prop q) => Prop (p & q) where | |
type Not (p & q) = Not p + Not q | |
contradiction = runEither @(Not p) @(Not q) (contradiction @p) (contradiction @q) | |
instance (Prop p, Prop q) => Prop (p + q) where | |
type Not (p + q) = Not p & Not q | |
contradiction = runEither @p @q (contradiction @(Not p)) (contradiction @(Not q)) | |
withL' :: (p & q) :- p | |
withL' = Sub Dict | |
withR' :: (p & q) :- q | |
withR' = Sub Dict |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment