Dot-product and Multi-head attention from the paper "Attention is all you need" (2017). Implementation in modern Tensorflow 2 using the Keras API.
Example use of the implementations below:
batch_size = 10
n_vectors = 150
d_model = 512
query = tf.random.uniform((batch_size, n_vectors, d_model), dtype=tf.float32)
key = tf.random.uniform((batch_size, n_vectors, d_model), dtype=tf.float32)
value = tf.random.uniform((batch_size, n_vectors, d_model), dtype=tf.float32)
# Test dot product attention
dp_layer = DotProductAttention(use_scale=True)
x = dp_layer([query, key, value])
print(f"Output from dot product attention: {x.shape}")
# Test multi-head attention
mh_layer = MultiHeadAttention(h=8)
x = mh_layer([query, key, value])
print(f"Output from multi-head attention: {x.shape}")
Dot-product:
class DotProductAttention(keras.layers.Layer):
def __init__(self, use_scale=True, **kwargs):
super(DotProductAttention, self).__init__(**kwargs)
self.use_scale = use_scale
def build(self, input_shape):
query_shape = input_shape[0]
if self.use_scale:
dim_k = tf.cast(query_shape[-1], tf.float32)
self.scale = 1 / tf.sqrt(dim_k)
else:
self.scale = None
def call(self, input):
query, key, value = input
score = tf.matmul(query, key, transpose_b=True)
if self.scale is not None:
score *= self.scale
return tf.matmul(tf.nn.softmax(score), value)
Multi-head attention:
class MultiHeadAttention(keras.layers.Layer):
def __init__(self, h=8, **kwargs):
super(MultiHeadAttention, self).__init__(**kwargs)
self.h = h
def build(self, input_shape):
query_shape, key_shape, value_shape = input_shape
d_model = query_shape[-1]
# Note: units can be anything, but this is what the paper does
units = d_model // self.h
self.layersQ = []
for _ in range(self.h):
layer = Dense(units, activation=None, use_bias=False)
layer.build(query_shape)
self.layersQ.append(layer)
self.layersK = []
for _ in range(self.h):
layer = Dense(units, activation=None, use_bias=False)
layer.build(key_shape)
self.layersK.append(layer)
self.layersV = []
for _ in range(self.h):
layer = Dense(units, activation=None, use_bias=False)
layer.build(value_shape)
self.layersV.append(layer)
self.attention = DotProductAttention(True)
self.out = Dense(d_model, activation=None, use_bias=False)
self.out.build((query_shape[0], query_shape[1], self.h * units))
def call(self, input):
query, key, value = input
q = [layer(query) for layer in self.layersQ]
k = [layer(key) for layer in self.layersK]
v = [layer(value) for layer in self.layersV]
# Head is in multi-head, just like the paper
head = [self.attention([q[i], k[i], v[i]]) for i in range(self.h)]
out = self.out(tf.concat(head, -1))
return out
Hi Emil,
Thank you for providing this piece of code.
Just one quick question. When using a multihead attention like this, does it need to be trained on data? or we can use pure like this without any training.