Skip to content

Instantly share code, notes, and snippets.

@ekzhang
Created June 10, 2020 20:38
Show Gist options
  • Save ekzhang/99a58e3a7e35349eaaea3cdb6d822e4d to your computer and use it in GitHub Desktop.
Save ekzhang/99a58e3a7e35349eaaea3cdb6d822e4d to your computer and use it in GitHub Desktop.
Char-RNN in PyTorch
import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
class CharRNN(nn.Module):
def __init__(self, vocab_size, model, hidden_size=256, num_layers=3):
super().__init__()
self.model = model
self.num_layers = num_layers
self.hidden_size = hidden_size
self.embed = nn.Embedding(vocab_size, 128)
if model == 'lstm':
self.rnn = nn.LSTM(128, hidden_size, num_layers, dropout=0.2)
elif model == 'gru':
self.rnn = nn.GRU(128, hidden_size, num_layers, dropout=0.2)
else:
self.rnn = nn.RNN(128, hidden_size, num_layers, dropout=0.2)
self.dense = nn.Linear(256, vocab_size)
def forward(self, input, hidden):
# input has shape (seq_len, batch)
x = self.embed(input) # shape (seq_len, batch, 128)
x, hidden = self.rnn(x, hidden) # shape (seq_len, batch, hidden_size)
x = F.log_softmax(self.dense(x), dim=-1) # shape (seq_len, batch, vocab_size)
return x, hidden
def init_hidden(self, batch_size, **kw):
if self.model != 'lstm':
return torch.zeros((self.num_layers, batch_size, self.hidden_size), **kw)
return (torch.zeros((self.num_layers, batch_size, self.hidden_size), **kw),
torch.zeros((self.num_layers, batch_size, self.hidden_size), **kw))
class TextDataset:
def __init__(self, filename):
with open(filename, 'r', encoding='utf-8') as f:
self.text = f.read()
self.chars = list(set(self.text))
self.char_to_idx = {c: i for i, c in enumerate(self.chars)}
self.idx_to_char = {i: c for i, c in enumerate(self.chars)}
self.vocab_size = len(self.chars)
def get_segment(self, idx, length):
return torch.tensor([self.char_to_idx[c] for c in self.text[idx : idx + length]])
def batch_generator(self, batch_size, seq_length):
length = len(self.text)
batch_chars = length // batch_size
for start in range(0, batch_chars - seq_length, seq_length):
x = torch.zeros((seq_length, batch_size), dtype=torch.long)
y = torch.zeros((seq_length, batch_size), dtype=torch.long)
for batch_idx in range(0, batch_size):
x[:, batch_idx] = self.get_segment(batch_chars * batch_idx + start, seq_length)
y[:, batch_idx] = self.get_segment(batch_chars * batch_idx + start + 1, seq_length)
yield x, y
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment