Last active
February 25, 2021 08:15
-
-
Save el-hult/06d838b2efb3920a30917afcf9327bb4 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class MemorizingNormalizer(nn.Module): | |
def __init__(self, d, eps, rho): | |
super().__init__() | |
self.means = nn.Parameter(torch.zeros(d), requires_grad=False) | |
self.vars = nn.Parameter(torch.ones(d), requires_grad=False) | |
self.eps = nn.Parameter(torch.tensor(eps, dtype=float), requires_grad=False) | |
self.rho = nn.Parameter(torch.tensor(rho, dtype=float), requires_grad=False) | |
def forward(self, x): | |
self.means.data = self.means * self.rho + (1 - self.rho) * x.mean(axis=0) | |
self.vars.data = self.vars * self.rho + (1 - self.rho) * x.var(axis=0) | |
varse = self.vars + self.eps | |
lj = -0.5 * torch.log(torch.prod(varse)) # log jacobian determinant | |
z = (x - self.means) / torch.sqrt(varse) | |
return z, lj | |
def inverse(self, z): | |
return z * torch.sqrt(self.vars + self.eps) + self.means |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment