Last active
April 5, 2022 08:17
-
-
Save el-hult/7bd7395c0a23480e82f811dd3bcf96cc to your computer and use it in GitHub Desktop.
Comparison between Empirical Bernstein, Hoeffding and CLT
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Comparison of empirical bernstein measures | |
See https://el-hult.github.io/2022/03/18/empirical-bernstein-bounds.html | |
""" | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import scipy.stats as sps | |
import pandas as pd | |
import seaborn as sns | |
plt.rcParams.update({"font.size": 8, "legend.fontsize": 8, "figure.figsize": (3, 2)}) | |
sns.set_theme() | |
ress = [] | |
for n in np.logspace(1,3): | |
for delta in [0.01, 0.05, 0.1]: # confidence level | |
for V_n in [0.01, 0.1, 0.25]: # observed variance | |
x = np.log(3 / delta) | |
audibert = np.sqrt(2 * V_n * x / n) + 3 * x / n | |
z = sps.norm.ppf(1 - delta / 2) | |
clt = z * np.sqrt(V_n / n) | |
x = np.log(2 / delta) | |
hoeffding = np.sqrt(x / 2 / n) | |
ress.append(dict(name="clt",ci_len=clt,delta=delta,V_n=V_n,n=n)) | |
ress.append(dict(name="audibert",ci_len=audibert,delta=delta,V_n=V_n,n=n)) | |
ress.append(dict(name="hoeffding",ci_len=hoeffding,delta=delta,V_n=V_n,n=n)) | |
df = pd.DataFrame(ress) | |
df.reset_index(inplace=True) | |
sns.relplot( | |
x="n", | |
y="ci_len", | |
hue="name", | |
data=df, | |
col="delta", | |
row="V_n", | |
facet_kws={"subplot_kws": {"xscale": "log", "yscale": "log"}}, | |
) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment