Last active
May 16, 2019 15:46
-
-
Save elch10/26945d92263602cefaf72fb9ed97a29d to your computer and use it in GitHub Desktop.
Modular Equation Solver: (a mod ring_size) * (x mod ring_size) = (b mod ring_size) for specified a and b. This script use Extended Euclidean algorithm
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def gcd(a,b): | |
if a < b: | |
a, b = b, a | |
if b == 0: | |
return a, 1, 0 | |
t_1, t_2 = 0, 1 | |
s_1, s_2 = 1, 0 | |
i = 1 | |
while b > 0: | |
q = a // b | |
print('{}) q = {} div {} = {}'.format(i, a,b,q)) | |
r = a - q * b | |
t = t_2 - q * t_1 | |
s = s_2 - q * s_1 | |
print('r = {} - {} * {} = {}; t = {} - {} * {} = {}; s = {} - {} * {} = {}'.format(a, q, b, r, t_2, q, t_1, t, s_2, q, s_1, s)) | |
a = b | |
b = r | |
t_2 = t_1 | |
t_1 = t | |
s_2 = s_1 | |
s_1 = s | |
print('r_1 = {}; r_2 = {}; t_1 = {}; t_2 = {}; s_1 = {}; s_2 = {}'.format(a, b, t_1, t_2, s_1, s_2)) | |
i += 1 | |
return a, t_2, s_2 | |
a = 234 | |
b = 253 | |
ring_size = 257 | |
print('r_1 = a = {}; r_2 = {}; t_1 = 0; t_2 = 1; s_1 = 1; s_2 = 0'.format(a, ring_size)) | |
d, t, s = gcd(ring_size, a) | |
print('\na={}; b={}; d={}; t={}; s={}'.format(a, b, d, t, s)) | |
x = (s * b) % ring_size | |
if x < 0: | |
x += ring_size | |
print('[x] = [{0}]*[{1}] = [{0}*{1}]=[{2}]={3}'.format(s, b, s*b, x)) | |
print('\nVerification') | |
print('[a]*[x]=[b]') | |
print('[{0}]*[{1}]=[{0}*{1}]=[{2}]=[{3}]=b'.format(a,x,a*x, (a*x)%ring_size)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment