- A simple note for how to start multi-node-training on slurm scheduler with PyTorch.
- Useful especially when scheduler is too busy that you cannot get multiple GPUs allocated, or you need more than 4 GPUs for a single job.
- Requirement: Have to use PyTorch DistributedDataParallel(DDP) for this purpose.
- Warning: might need to re-factor your own code.
- Warning: might be secretly condemned by your colleagues because using too many GPUs.
See the official Differentiable Programming Manifesto instead.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import std.algorithm, std.conv, std.range, std.stdio; | |
// FizzBuzz from http://ideone.com/ciKtm | |
// I cannot port 'f <> b <|> n' | |
void main() | |
{ | |
auto fizz = cycle([null, null, "Fizz"]); | |
auto buzz = cycle([null, null, null, null, "Buzz"]); | |
auto nums = map!(to!string)(iota(1, 101)); |