Created
October 29, 2017 12:56
-
-
Save eliaperantoni/0ac2dcfcd2f54b7217e283e1519f910b to your computer and use it in GitHub Desktop.
Neural network
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# imports | |
import numpy as np | |
import matplotlib.pyplot as pyplot | |
import scipy.special as scipyspec | |
%matplotlib inline | |
from IPython.display import clear_output | |
# neural network class definition | |
class NeuralNetwork: | |
# initialise the neural network | |
def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate): | |
# set number of input, hidden and output nodes | |
self.inodes = input_nodes | |
self.hnodes = hidden_nodes | |
self.onodes = output_nodes | |
# set the learning rate | |
self.lr = learning_rate | |
#w eights | |
self.wih = np.random.normal(0.0, pow(self.hnodes, -0.5), (self.hnodes, self.inodes)) | |
self.who = np.random.normal(0.0, pow(self.onodes, -0.5), (self.onodes, self.hnodes)) | |
# sigmoid function | |
self.activation_function = lambda x: scipyspec.expit(x) | |
# train the neural network | |
def train(self, input_list, target_list): | |
# convert list to 2d array | |
input_layer = np.array(input_list, ndmin=2).T | |
target_layer = np.array(target_list, ndmin=2).T | |
hidden_layer = np.dot(self.wih, input_layer) | |
hidden_layer = self.activation_function(hidden_layer) | |
output_layer = np.dot(self.who, hidden_layer) | |
output_layer = self.activation_function(output_layer) | |
# calculate hidden/output errors | |
hidden_output_errors = target_layer - output_layer | |
# calculate input/hidden errors | |
input_hidden_errors = np.dot(self.who.T, hidden_output_errors) | |
# refine weights | |
self.who += self.lr * np.dot((hidden_output_errors * output_layer * (1.0 - output_layer)), np.transpose(hidden_layer)) | |
self.wih += self.lr * np.dot((input_hidden_errors * hidden_layer * (1.0 - hidden_layer)), np.transpose(input_layer)) | |
# query the neural network | |
def query(self, input_list): | |
# convert list to 2d array | |
input_layer = np.array(input_list, ndmin=2).T | |
hidden_layer = np.dot(self.wih, input_layer) | |
hidden_layer = self.activation_function(hidden_layer) | |
output_layer = np.dot(self.who, hidden_layer) | |
output_layer = self.activation_function(output_layer) | |
return output_layer | |
# number of input, hidden and output nodes | |
input_nodes = 784 | |
hidden_nodes = 200 | |
output_nodes = 10 | |
epochs = 1 | |
# learning rate | |
learning_rate = 0.1 | |
# creating the network | |
n = NeuralNetwork(input_nodes, hidden_nodes, output_nodes, learning_rate) | |
# train | |
data_f = open('mnist_train.csv', 'r') | |
data = data_f.readlines() | |
data_f.close() | |
for e in range(epochs): | |
for record in data: | |
all_values = record.split(',') | |
inputs = (np.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01 | |
targets = np.zeros(output_nodes) + 0.01 | |
targets[int(all_values[0])] = 0.99 | |
n.train(inputs ,targets) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment