Created
March 14, 2022 18:19
-
-
Save eliasdabbas/4bd1a96240f2be4f82755aea50b01fb5 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import datetime | |
import advertools as adv | |
import pandas as pd | |
stopwords = ['to', 'of', 'the', 'in', 'for', 'and', 'on', 'a', 'as', 'with', | |
'from', 'over', 'is', 'at', '—', '-', 'be', '2022', '–', 'it', 'by', | |
'we', 'why', 'but', 'my', 'how', 'not', 'an', 'are', 'no', 'go', | |
'your', 'up', 'his'] | |
def news_sitemap_wordcount(news_sitemap, name, phrase_len=1, showtop=30, | |
filter_func=lambda df: df): | |
news_sitemap = adv.sitemap_to_df(news_sitemap) | |
news_sitemap = filter_func(news_sitemap) | |
title = adv.word_frequency(news_sitemap['news_title'], rm_words=stopwords, | |
phrase_len=phrase_len) | |
nowraw = datetime.datetime.utcnow() | |
now = datetime.datetime.strftime(nowraw, '%d %b, %Y') | |
return (title[:showtop] | |
.set_index(pd.Index(list(range(1, showtop+1)))) | |
.style.set_caption( | |
f'<h2>{name} news topics</h2><h5>{now}</h5>') | |
.bar(subset=['abs_freq'], color='lightgray')) | |
news_sitemap_urls = [ | |
('https://www.ft.com/sitemaps/news.xml', 'FT', lambda x: x), | |
('https://www.nytimes.com/sitemaps/new/news.xml.gz', 'NYTimes', | |
lambda df: df[df['loc'].str.contains('/2022/')]), | |
('https://www.bbc.com/sitemaps/https-index-com-news.xml', 'BBC', | |
lambda df: df[df['publication_name'].eq('BBC News')]), | |
('https://www.economist.com/googlenews.xml', 'Economist', lambda x: x), | |
('https://www.bloomberg.com/feeds/bbiz/sitemap_news.xml', 'Bloomberg', lambda x: x), | |
('https://news.sky.com/sitemap/sitemap-news.xml', 'SKY', lambda x: x), | |
('https://www.washingtonpost.com/arcio/news-sitemap/', 'Wash.Post', lambda x: x), | |
('https://www.foxnews.com/sitemap.xml?type=news', 'FOX', lambda x: x) | |
] | |
sitemaps_df = pd.DataFrame(news_sitemap_urls, columns=['url', 'name', 'filter_func']) | |
final_dfs = [] | |
for sitemap, name, filterfunc in sitemaps_df.values: | |
for ngram in [1, 2]: | |
df = news_sitemap_wordcount(sitemap,name, | |
filter_func=filterfunc, | |
showtop=20, phrase_len=ngram) | |
final_dfs.append(df) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
The script was run twice for each sitemap, with 1 and 2-grams, for additional perspective on topics: