Last active
May 6, 2021 19:46
-
-
Save eliocamp/6b04af04a749470150b6418f4fa75dcc to your computer and use it in GitHub Desktop.
MDS
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(magrittr) | |
library(ggplot2) | |
library(rgl) | |
library(plotly) | |
set.seed(42) | |
# Cantidad de puntos por grupos | |
N <- 20 | |
# Localización de los grupos | |
mus <- list(negro = c(-15, 5, 0), | |
rojo = c(-5, -15, 0), | |
cian = c(0, 0, 5), | |
rosa = c(0, 0, -5), | |
verde = c(5, 15, 0), | |
azul = c(15, -5, 0)) | |
# Gera los grupos. | |
datos <- lapply(seq_along(mus), function(i) { | |
d <- as.data.frame(matrix(rnorm(N*3), ncol = 3) + matrix(rep(mus[[i]], N), ncol = 3, byrow = TRUE)) | |
d$col <- names(mus)[i] | |
d | |
}) %>% | |
do.call(rbind, .) | |
# Hagamos MDS | |
n <- nrow(datos) | |
# Matriz de distancias cuadradas | |
D <- as.matrix(dist(as.matrix(datos[, -4])))^2 | |
# Matriz de centrado | |
C <- diag(1, nrow = n) - 1/n*matrix(1, nrow = n, ncol = n) | |
B <- -1/2*(C %*% D %*% C) | |
# Calcular los autovaltores | |
e <- eigen(B) | |
# Reconstrucción de las variables en 2 dimensiones | |
m <- 2 | |
mds <- as.data.frame(e$vectors[, 1:2] %*% diag(sqrt(e$values[1:2]), nrow = 2)) | |
mds$col <- datos$col | |
# Plotear las variables originales en 3D | |
plot_ly(datos, x = ~V1, y = ~V2, z = ~V3, color = ~col) %>% | |
add_markers(size = 1) | |
# Plotear las nuevas variables en 2D | |
mds %>% | |
ggplot(aes(V1, V2)) + | |
geom_point(aes(color = col)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Datos originales en 3D
Datos proyectados en 2D