Created
July 10, 2025 05:22
-
-
Save elliottmorris/c3e3147e23c039c75353a5667a120f4f to your computer and use it in GitHub Desktop.
Figuring out who would vote for Musk using ANES data
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(tidyverse) | |
library(survey) | |
# mutate weight variable | |
dat = read_csv('anes_timeseries_2024_csv_20250430.csv') %>% | |
filter(V241012 == 1) %>%# RVs | |
mutate(weight = case_when(!is.na(V240103b) ~ V240103b, | |
!is.na(V240104b) ~ V240104b, | |
!is.na(V240104b) ~ V240104b, | |
!is.na(V240103a) ~ V240103a, | |
!is.na(V240106a) ~ V240106a, | |
!is.na(V240104a) ~ V240104a, | |
T ~ NA_real_ | |
), | |
weight = ifelse(is.na(weight), mean(weight,na.rm=T), weight), | |
party_id = V241227x, | |
trump_thermo = V241157, | |
harris_thermo = V241156, | |
dems_thermo = V241166, | |
reps_thermo = V241167, | |
gov_spending_scale = V241239, # 1 = anti, 7 = pro | |
dem_7pt_libcon = V241183 # 7 is con | |
) %>% | |
select(weight, party_id, trump_thermo, harris_thermo, dems_thermo, reps_thermo, | |
gov_spending_scale, dem_7pt_libcon) | |
# sum(is.na(dat$weight)) | |
nrow(dat) | |
# filter out some obs | |
dat = dat %>% | |
mutate_all(function(x){ifelse(x < 0, NA, x)}) | |
nrow(dat) | |
dat = dat %>% | |
mutate(typology = | |
case_when(reps_thermo > 50 & | |
dems_thermo < 50 & | |
gov_spending_scale <= 4 ~ 'Hardcore Rep', | |
reps_thermo < 50 & | |
dems_thermo > 50 & | |
gov_spending_scale >= 5 ~ 'Hardcore Dem', | |
trump_thermo <= 50 & reps_thermo < 50 & | |
dems_thermo < 50 & | |
gov_spending_scale < 4 & | |
dem_7pt_libcon < 3 ~ 'America Party', | |
reps_thermo > 50 ~ 'Soft Rep', | |
dems_thermo > 50 ~ 'Soft Dem', | |
gov_spending_scale >= 5 ~ 'Soft Dem', | |
gov_spending_scale < 5 ~ 'Soft Rep' | |
) | |
) | |
dat %>% | |
pull(typology) %>% table(.,useNA = 'always') %>% prop.table() | |
svy = svydesign(ids = ~1, data = dat, weights = ~weight) | |
svymean(~typology, svy, na.rm = T) | |
# strong rep or dem | |
n = nrow(dat); n | |
# dem or rep | |
(dat %>% filter(party_id %in% c(7,6,1,2)) %>% pull(weight) %>% sum) / n | |
# not dem or rep, but pro trump | |
(dat %>% filter(!party_id %in% c(7,6,1,2)) %>% | |
filter(trump_thermo >= 50) %>% pull(weight) %>% sum) / n | |
# not dem or rep, not pro trump, and wants to keep funding | |
(dat %>% filter(!party_id %in% c(7,6,1,2)) %>% | |
filter(trump_thermo <= 50) %>% | |
filter(gov_spending_scale >= 4) %>% pull(weight) %>% sum) / n | |
67.5 + 14 + 15.8 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment