Skip to content

Instantly share code, notes, and snippets.

@elliottmorris
Last active January 29, 2024 18:56
Show Gist options
  • Save elliottmorris/c70fd4d32049c9986a45e2dfc07fb4f0 to your computer and use it in GitHub Desktop.
Save elliottmorris/c70fd4d32049c9986a45e2dfc07fb4f0 to your computer and use it in GitHub Desktop.
A live election-night prediction model using The Economist's pre-election forecast
#' Description
#' This file runs a live election-night forecast based on The Economist's pre-election forecasting model
#' available at projects.economist.com/us-2020-forecast/president.
#' It is resampling model based on https://pkremp.github.io/update_prob.html.
#' This script does not input any real election results! You will have to enter your picks/constraints manually (scroll to the bottom of the script).
#'
#' Licence
#' This software is published by *[The Economist](https://www.economist.com)* under the [MIT licence](https://opensource.org/licenses/MIT). The data generated by *The Economist* are available under the [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/).
#' The licences include only the data and the software authored by *The Economist*, and do not cover any *Economist* content or third-party data or content made available using the software. More information about licensing, syndication and the copyright of *Economist* content can be found [here](https://www.economist.com/rights/).
library(tidyverse)
library(mvtnorm)
library(politicaldata)
# functions first ---------------------------------------------------------
logit <- function(x) log(x/(1-x))
inv_logit <- function(x) 1/(1 + exp(-x))
draw_samples <- function(biden_states = NULL, trump_states = NULL, states = NULL,
upper_biden = NULL, lower_biden = NULL, print_acceptance = FALSE, target_nsim = 1000){
sim <- matrix(NA, nr = 1, nc = length(mu))
n <- 0
while(nrow(sim) < target_nsim){
# randomly sample from the posterior distribution and reject when constraints are not met
n <- n + 1
proposals <- inv_logit(rmvnorm(1e5, mu, Sigma, method = "svd")) # "DC" is pretty much uncorrelated
colnames(proposals) <- names(mu)
if (!is.null(biden_states)) proposals[which(proposals[,biden_states] < .5)] <- NA
if (!is.null( trump_states)) proposals[which(proposals[, trump_states] > .5)] <- NA
if (!is.null( states)){
for (s in states){
proposals[which(proposals[, s] > upper_biden[s] |
proposals[, s] < lower_biden[s])] <- NA
}
}
reject <- apply(proposals, 1, function(x) any(is.na(x)))
sim <- rbind(sim, proposals[!reject,])
if (nrow(sim) < target_nsim & nrow(sim)/(nrow(proposals)*n) < 1-99.99/100){
stop(paste("rmvnorm() is working hard... but more than 99.99% of the samples are rejected; you should relax some contraints.", sep = ""))
}
}
return(list("matrix" = sim[-1,], "acceptance_rate" = nrow(sim)/(nrow(proposals)*n)))
}
update_prob <- function(biden_states = NULL, trump_states = NULL, biden_scores_list = NULL, target_nsim = 1000, show_all_states = TRUE){
states <- names(biden_scores_list)
lower_biden <- sapply(biden_scores_list, function(x) x[1]/100)
upper_biden <- sapply(biden_scores_list, function(x) x[2]/100)
sim <- draw_samples(biden_states = biden_states, trump_states = trump_states, states = states,
upper_biden = upper_biden, lower_biden = lower_biden,
target_nsim = target_nsim)
ev_dist <- (sim[["matrix"]] > .5) %*% ev
state_win <- colMeans(sim[["matrix"]] > .5)
p <- mean(ev_dist >= 270)
sd <- sqrt(p*(1-p)/length(ev_dist))
if (show_all_states){
cat("Pr(biden wins) by state, in %:\n")
print(t(round(100*state_win,1)))
cat("--------\n")
}
cat(paste("Pr(biden wins the electoral college) = ", round(100*p,1), "%\n[nsim = ", length(ev_dist), "; se = ", round(sd*100,1), "%]", sep = ""))
if (show_all_states) cat("\n--------\n")
}
# read data ---------------------------------------------------------------
# get simulations
sim_forecast <- read_csv('https://cdn.economistdatateam.com/us-2020-forecast/data/president/electoral_college_simulations.csv')
# check initial parameters
nrow(sim_forecast)
mean(sim_forecast$dem_ev > 269)
# select relevant columns and make the data frae into a matrix
sim_forecast <- sim_forecast %>% select(4:ncol(.))
sim_forecast <- list(sim_forecast,sim_forecast,sim_forecast,sim_forecast,sim_forecast) %>% bind_rows %>% as.matrix
# this bit is really hacky
# it make the simulations a little less correlated by add a bunch of random noise
# this helps our live model react to really implausible events that could happen on election night
# but will have the result of pushing the initial pre-results forecasts back toward 50-50
sim_forecast <- sim_forecast +
rnorm(nrow(sim_forecast), 0, 0.01) + # national error component
replicate(ncol(sim_forecast),rnorm(nrow(sim_forecast),0,0.02)) # state
sim_forecast <- ifelse(sim_forecast <= 0, 0.0001, sim_forecast)
sim_forecast <- ifelse(sim_forecast >= 1, 0.99999, sim_forecast)
sim_forecast <- as_tibble(sim_forecast)
# now, get electoral votes in each state
# and make sure they're in the right order
#ev_state <- read_csv('data/state_evs.csv')$ev
#names(ev_state) <- read_csv('data/state_evs.csv')$state
ev_state <- read_csv('https://raw.githubusercontent.com/TheEconomist/us-potus-model/master/data/2012.csv')$ev
names(ev_state) <- read_csv('https://raw.githubusercontent.com/TheEconomist/us-potus-model/master/data/2012.csv')$state
ev <- ev_state[colnames(sim_forecast)]
# check that the EVs and state forecasts add up to the right amounts
sim_evs <- apply(sim_forecast,
1,
function(x){
sum((x > 0.5 )* ev)
})
hist(sim_evs,breaks=538)
median(sim_evs)
mean(sim_evs)
mean(sim_evs > 269)
enframe(prop.table(table(sim_evs)),'dem_ev','pct') %>% arrange(desc(pct))
# adding ME1 and ME2, NE1 NE2 to sim_forecast matrix and ev vector
# we do this by adding the average district-level two-party dem presidential vote, relative
# to the state-level dem two-party vote, back to to our state-level forecast
# first, split up EVs
ev["ME"] <- 2
ev["NE"] <- 2
ev <- c(ev, "ME1" = 1, "ME2" = 1, "NE1" = 1, "NE2" = 1, "NE3" = 1)
sum(ev)
# create simulations for ME and NE districts
me_ne_leans <- politicaldata::pres_results_by_cd %>% filter(year >= 2012, state_abb %in% c("ME","NE")) %>%
select(-other) %>%
rename(state = state_abb) %>%
group_by(year,state) %>%
mutate(sum_pct = dem + rep,
total_votes = total_votes * sum_pct,
dem = dem /sum_pct,
rep = rep/sum_pct) %>%
mutate(dem_vote_state = sum(dem * total_votes) / sum(total_votes)) %>%
mutate(dem_cd_lean = dem - dem_vote_state) %>%
group_by(state,district) %>%
summarise(dem_cd_lean = weighted.mean(dem_cd_lean, c(0.3,0.7)))
# bind new simulation columns for the congressional districts, based on the above
sim_forecast <- bind_cols(
sim_forecast,
tibble(
ME1 = sim_forecast %>% pull(ME) +
rnorm(nrow(sim_forecast),
me_ne_leans[me_ne_leans$state == "ME" & me_ne_leans$district == 1,]$dem_cd_lean,
.0075),
ME2 = sim_forecast %>% pull(ME) +
rnorm(nrow(sim_forecast),
me_ne_leans[me_ne_leans$state == "ME" & me_ne_leans$district == 2,]$dem_cd_lean,
.0075),
NE1 = sim_forecast %>% pull(NE) +
rnorm(nrow(sim_forecast),
me_ne_leans[me_ne_leans$state == "NE" & me_ne_leans$district == 1,]$dem_cd_lean,
.0075),
NE2 = sim_forecast %>% pull(NE) +
rnorm(nrow(sim_forecast),
me_ne_leans[me_ne_leans$state == "NE" & me_ne_leans$district == 2,]$dem_cd_lean,
.0075),
NE3 = sim_forecast %>% pull(NE) +
rnorm(nrow(sim_forecast),
me_ne_leans[me_ne_leans$state == "NE" & me_ne_leans$district == 3,]$dem_cd_lean,
.0075)
)
)
sim_forecast
sim_evs <- apply(sim_forecast,
1,
function(x){
sum((x > 0.5 )* ev)
})
colMeans(sim_forecast > 0.5)
hist(sim_evs,breaks=538)
median(sim_evs)
mean(sim_evs)
mean(sim_evs > 269)
enframe(prop.table(table(sim_evs)),'dem_ev','pct') %>% arrange(desc(pct))
# final data wrangling -- this stuff getes passed into the update_prob function
# mainly we just want to make sure everything is in the right order with the right names
ev <- ev[colnames(sim_forecast)]
Sigma <- cov(logit(sim_forecast))
Sigma
mu <- colMeans(logit(sim_forecast))
names(mu) <- colnames(sim_forecast)
# run ---------------------------------------------------------------------
# for example...
# raw prob, no constraints
update_prob()
# biden wins florida
update_prob(biden_states = c("FL"),
trump_states = NULL,
biden_scores_list = NULL)
# trump wins florida
update_prob(biden_states = NULL,
trump_states = c("FL"),
biden_scores_list = NULL)
# trump wins fl and nc, biden wins va, biden margin in MI can't be outside -10 or 10
update_prob(biden_states = c("VA"),
trump_states = c("FL","NC"),
biden_scores_list = list("MI" = c(45,55)))
# now it's your turn....
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment