Last active
September 2, 2019 06:13
-
-
Save elliptic-shiho/3ea53bc0829bd1fb37236cb35e73d532 to your computer and use it in GitHub Desktop.
TokyoWesterns CTF 2019 - happy! Solver & simple writeup
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
require_relative './happy' # rename happy -> happy.rb | |
q = 180754955592872777770305021165949447837520820408608437544593001477325680227199967219036800612237524673886247520794601572290402702594122131782305474875236404413820478308317235725623037177247985490515533618988964977186476558003216903 | |
p = 166878663790065040663149504970052368124427462024107500159158464138407657299730521908976684364578086644682045134207945137293534705688910696520830729908263578233018529387676221035298300775812585471932551347478303730822844748034186479 | |
k = 2 | |
e = 65537 | |
d1 = e.pow((p - 1) / 2 - 2, (p - 1)) | |
d2 = e.pow(((q - 1) / 2 - 1) * (q - 1) * (k > 1 ? q ** (k - 2) : 1) - 1, q ** (k - 1) * (q - 1)) | |
cf = p.pow(q ** (k - 1) * (q - 1) - 1, q ** k) | |
key = Key.new({ | |
n: p * q ** k, | |
e: e, | |
p: p, | |
q: q ** k, | |
d1: d1, | |
d2: d2, | |
cf: cf, | |
}) | |
File.binwrite("flag.txt", key.private_decrypt(File.binread("flag.enc"))) | |
=begin | |
Sun Sep 1 18:59:16 JST 2019 ~/Downloads/twctf/happy 100% | |
> ruby solve.rb && cat flag.txt | |
TWCTF{I_m_not_sad__I_m_happy_always} | |
=end |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sage.all import * | |
n = 5452318773620154613572502669913080727339917760196646730652258556145398937256752632887555812737783373177353194432136071770417979324393263857781686277601413222025718171529583036919918011865659343346014570936822522629937049429335236497295742667600448744568785484756006127827416640477334307947919462834229613581880109765730148235236895292544500644206990455843770003104212381715712438639535055758354549980537386992998458659247267900481624843632733660905364361623292713318244751154245275273626636275353542053068704371642619745495065026372136566314951936609049754720223393857083115230045986813313700617859091898623345607326632849260775745046701800076472162843326078037832455202509171395600120638911 | |
e = 65537 | |
cf = 25895436290109491245101531425889639027975222438101136560069483392652360882638128551753089068088836092997653443539010850513513345731351755050869585867372758989503310550889044437562615852831901962404615732967948739458458871809980240507942550191679140865230350818204637158480970417486015745968144497190368319745738055768539323638032585508830680271618024843807412695197298088154193030964621282487334463994562290990124211491040392961841681386221639304429670174693151 | |
F = Zmod(n) | |
PR.<x> = PolynomialRing(F) | |
pol = x * cf - 1 | |
pol = pol.monic() | |
# I guessed X and beta from some experiments... | |
x0 = pol.small_roots(X=2^800, beta=0.2)[0] | |
qk = ZZ(gcd(x0 * cf - 1, n)) | |
q, k = is_prime_power(qk, get_data=True) | |
p = ZZ(n / qk) | |
assert is_prime(p) | |
assert is_prime(q) | |
print "[+] q, k = %d, %d" % (q, k) | |
print "[+] p = %d" % p | |
""" | |
Sun Sep 1 18:58:48 JST 2019 ~/Downloads/twctf/happy 100% | |
> time sage solve.sage | |
[+] q, k = 180754955592872777770305021165949447837520820408608437544593001477325680227199967219036800612237524673886247520794601572290402702594122131782305474875236404413820478308317235725623037177247985490515533618988964977186476558003216903, 2 | |
[+] p = 166878663790065040663149504970052368124427462024107500159158464138407657299730521908976684364578086644682045134207945137293534705688910696520830729908263578233018529387676221035298300775812585471932551347478303730822844748034186479 | |
real 0m8.301s | |
user 0m7.995s | |
sys 0m0.265s | |
""" |
Nice! I overkilled it, by finding small roots of a 3-variate linear polynomial, but over integers.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Summary: Break a variant of RSA cryptosystem with CRT coefficient.
Writeup:
This RSA variant is a Multi-power RSA. i.e. This RSA cryptosystem uses
n = p*q^k
wherep
,q
are primes andk
is some non-zero positive integer. we don't havep
,q
andk
. We have public key(e, n)
, encrypted flag, andcf
.cf
is not a part of public key but It included to public key file because It has a simple mistake at this problem code (:ce
).It holds
cf * p ≡ 1 (mod q^k)
thus we knowcf * x - 1 ≡ 0 (mod q^k)
has a solutionx = p
. If we got that solution(namedx0
),cf * x0 - 1
is a multiple ofq^k
, so we can getq^k
by computegcd(n, cf * x0 - 1)
. furthermore, we can compute the solution ofcf * x - 1 ≡ 0 (mod q^k)
using a multiple ofq^k
(i.e.n = p*q^k
) by Coppersmith's Method.I wrote
solve.sage
and execute it. then I gotp
,q
, andk
. finally, I copy/paste/editsolve.rb
and got flag.