Created
December 7, 2012 02:21
-
-
Save elsonidoq/4230222 to your computer and use it in GitHub Desktop.
Python implementation of mutual information for continuous variables
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from math import log | |
log2= lambda x:log(x,2) | |
from scipy import histogram, digitize, stats, mean, std | |
from collections import defaultdict | |
def mutual_information(x,y): | |
return entropy(y) - conditional_entropy(x,y) | |
def conditional_entropy(x, y): | |
""" | |
x: vector de numeros reales | |
y: vector de numeros enteros | |
devuelve H(Y|X) | |
""" | |
# discretizacion de X | |
hx, bx= histogram(x, bins=x.size/10, density=True) | |
Py= compute_distribution(y) | |
Px= compute_distribution(digitize(x,bx)) | |
res= 0 | |
for ey in set(y): | |
# P(X | Y) | |
x1= x[y==ey] | |
condPxy= compute_distribution(digitize(x1,bx)) | |
for k, v in condPxy.iteritems(): | |
res+= (v*Py[ey]*(log2(Px[k]) - log2(v*Py[ey]))) | |
return res | |
def entropy(y): | |
""" | |
Computa la entropia de un vector discreto | |
""" | |
# P(Y) | |
Py= compute_distribution(y) | |
res=0.0 | |
for k, v in Py.iteritems(): | |
res+=v*log2(v) | |
return -res | |
def compute_distribution(v): | |
""" | |
v: vector de valores enteros | |
devuelve un diccionario con la probabilidad de cada valor | |
computado como la frecuencia de ocurrencia | |
""" | |
d= defaultdict(int) | |
for e in v: d[e]+=1 | |
s= float(sum(d.values())) | |
return dict((k, v/s) for k, v in d.items()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment