Skip to content

Instantly share code, notes, and snippets.

import time
def timeit(f):
def timed(*args, **kwargs):
start = time.clock()
for _ in range(100):
f(*args, **kwargs)
end = time.clock()
return end - start
{'INTEGER': 12, 'HTMLTAG': 10, 'int': 4, 'formattedsize': 4, 'sizeindex': 4, 'string': 3,
'sizes': 3, 'decimals': 3, 'size': 2, 'code': 2, 'blockquote': 2, 'permitted': 2, 'specifiers': 2,
'default': 2, 'parameter': 2, 'FUNCTIONCALL': 2, 'CODE': 1, 'private': 1, 'eb': 1, 'gt': 1,
'gb': 1, 'error': 1, 'application': 1, 'format': 1, 'desktop': 1, 'pb': 1, 'formatsizebinary': 1,
'lt': 1, 'tb': 1, 'math': 1, 'return': 1, 'kb': 1, 'yb': 1, 'tostring': 1, 'zb': 1, 'amp': 1,
'mb': 1, 'bytes': 1, 'length': 1, 'double': 1}
['default',
'parameter',
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
import csv
with open('companies.csv', 'wb') as csvfile:
csv.writer(csvfile, delimiter=',').writerows(row_gen)
row_gen = ( [td.text(), td.next().text()] # left, right element
for table in d('.borderless').items()
for td in table('td:nth-child(1)').items() # left column
if table('th:first').text() == 'NUANS Reports & Preliminary Searches' and
td.next().text() in ('Active', 'Inactive') )
10 loops, best of 3: 172 ms per loop
l = []
for th in d.items('.borderless td:nth-child(1)'):
left = th.text()
right = th.next().text()
tr = th.parent()
tbody = tr.parent()
title = tbody('th:first').text() # first element
if title == 'NUANS Reports & Preliminary Searches' and right in ['Active', 'Inactive']:
l.append([left, right])
from pyquery import PyQuery as pq
url = 'https://www.nuans.com/RTS2/en/jur_codes-codes_jur_en.cgi#Example_of_report_layouts'
d = pq(url)
@elyase
elyase / count_motifs.py
Last active December 28, 2015 13:39
Counts motifs appearances in a list of DNA sequences
from sklearn.feature_extraction.text import CountVectorizer
import numpy as np
def tokenizer(s):
width = 7
return [s[i:i+width] for i in range(len(s)-width+1)]
def count_chunks(sequence_list):
vectorizer = CountVectorizer(tokenizer=tokenizer)
X = vectorizer.fit_transform(sequence_list)
# Split the dataset in two equal parts
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.5, random_state=0)
# Set the parameters by cross-validation
tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4],
'C': [1, 10, 100, 1000]},
{'kernel': ['linear'], 'C': [1, 10, 100, 1000]}]
model = GridSearchCV(SVC(C=1), tuned_parameters, cv=5, scoring=score)
model.fit(X_train, y_train)
function svmStruct = best_svm_classifer_rbf(cdata,labels)
%Write a function called crossfun to calculate the predicted classification yfit from a test vector
%xtest, when the SVM is trained on a sample xtrain that has classification ytrain.
function yfit = crossfun(xtrain,ytrain,xtest, rbf_sigma, boxconstraint)
% Train the model on xtrain, ytrain,
% and get predictions of class of xtest and output it as yfit