Created
June 19, 2023 09:41
-
-
Save emaballarin/98046f14589a867508568b254e09c062 to your computer and use it in GitHub Desktop.
From (soon to be removed) ebtorch.nn.lmu
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
# ============================================================================== | |
# | |
# Copyright (c) 2019-* Brent Komer. All Rights Reserved. | |
# [orig. code: https://github.com/bjkomer/pytorch-legendre-memory-unit] | |
# | |
# | |
# Copyright (c) 2019-* Applied Brain Research. All Rights Reserved. | |
# [orig. work: https://papers.nips.cc/paper/2019/file/952285b9b7e7a1be5aa7849f32ffff05-Paper.pdf; | |
# orig. code: https://github.com/nengo/keras-lmu] | |
# | |
# Copyright (c) 2020-* Emanuele Ballarin <[email protected]> | |
# All Rights Reserved. | |
# [maintainance, adaptation, extension] | |
# | |
# ============================================================================== | |
import math | |
from functools import partial | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from nengolib.signal import cont2discrete | |
from nengolib.signal import Identity | |
from nengolib.synapses import LegendreDelay | |
# from: https://github.com/deepsound-project/samplernn-pytorch/blob/master/nn.py#L46 | |
def lecun_uniform(tensor): | |
fan_in = nn.init._calculate_correct_fan(tensor, "fan_in") # skipcq: PYL-W0212 | |
nn.init.uniform_(tensor, -math.sqrt(3 / fan_in), math.sqrt(3 / fan_in)) | |
# based on the tensorflow implementation: | |
# https://github.com/abr/neurips2019/blob/master/lmu/lmu.py | |
class LMUCell(nn.Module): | |
def __init__( | |
self, | |
input_size, | |
hidden_size, | |
order, | |
theta=100, # relative to dt=1 | |
method="zoh", | |
trainable_input_encoders=True, | |
trainable_hidden_encoders=True, | |
trainable_memory_encoders=True, | |
trainable_input_kernel=True, | |
trainable_hidden_kernel=True, | |
trainable_memory_kernel=True, | |
trainable_a=False, | |
trainable_b=False, | |
input_encoders_initializer=lecun_uniform, | |
hidden_encoders_initializer=lecun_uniform, | |
memory_encoders_initializer=partial(torch.nn.init.constant_, val=0), | |
input_kernel_initializer=torch.nn.init.xavier_normal_, | |
hidden_kernel_initializer=torch.nn.init.xavier_normal_, | |
memory_kernel_initializer=torch.nn.init.xavier_normal_, | |
hidden_activation="tanh", | |
): | |
super(LMUCell, self).__init__() | |
self.input_size = input_size | |
self.hidden_size = hidden_size | |
self.order = order | |
if hidden_activation == "tanh": | |
self.hidden_activation = torch.tanh | |
elif hidden_activation == "relu": | |
self.hidden_activation = torch.relu | |
else: | |
raise NotImplementedError( | |
f"hidden activation '{hidden_activation}' is not implemented" | |
) | |
realizer = Identity() | |
self._realizer_result = realizer(LegendreDelay(theta=theta, order=self.order)) | |
self._ss = cont2discrete( | |
self._realizer_result.realization, dt=1.0, method=method | |
) | |
self._A = self._ss.A - np.eye(order) # puts into form: x += Ax | |
self._B = self._ss.B | |
self._C = self._ss.C | |
assert np.allclose(self._ss.D, 0) # proper LTI | |
self.input_encoders = nn.Parameter( | |
torch.Tensor(1, input_size), requires_grad=trainable_input_encoders | |
) | |
self.hidden_encoders = nn.Parameter( | |
torch.Tensor(1, hidden_size), requires_grad=trainable_hidden_encoders | |
) | |
self.memory_encoders = nn.Parameter( | |
torch.Tensor(1, order), requires_grad=trainable_memory_encoders | |
) | |
self.input_kernel = nn.Parameter( | |
torch.Tensor(hidden_size, input_size), requires_grad=trainable_input_kernel | |
) | |
self.hidden_kernel = nn.Parameter( | |
torch.Tensor(hidden_size, hidden_size), | |
requires_grad=trainable_hidden_kernel, | |
) | |
self.memory_kernel = nn.Parameter( | |
torch.Tensor(hidden_size, order), requires_grad=trainable_memory_kernel | |
) | |
self.AT = nn.Parameter(torch.Tensor(self._A), requires_grad=trainable_a) | |
self.BT = nn.Parameter(torch.Tensor(self._B), requires_grad=trainable_b) | |
# Initialize parameters | |
input_encoders_initializer(self.input_encoders) | |
hidden_encoders_initializer(self.hidden_encoders) | |
memory_encoders_initializer(self.memory_encoders) | |
input_kernel_initializer(self.input_kernel) | |
hidden_kernel_initializer(self.hidden_kernel) | |
memory_kernel_initializer(self.memory_kernel) | |
def forward(self, finput, hx): | |
h, m = hx | |
u = ( | |
F.linear(finput, self.input_encoders) | |
+ F.linear(h, self.hidden_encoders) | |
+ F.linear(m, self.memory_encoders) | |
) | |
m = m + F.linear(m, self.AT) + F.linear(u, self.BT) | |
h = self.hidden_activation( | |
F.linear(finput, self.input_kernel) | |
+ F.linear(h, self.hidden_kernel) | |
+ F.linear(m, self.memory_kernel) | |
) | |
return h, m |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment