Last active
September 18, 2018 08:50
-
-
Save ematvey/5ca7df5d37c2f6a674390d42ef9e7d59 to your computer and use it in GitHub Desktop.
Affine augmentations for 3D tensors targeted at medical images
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
from typing import Union, NamedTuple | |
import numpy as np | |
from scipy.ndimage import affine_transform | |
class AffineTransform(NamedTuple): | |
matrix: np.ndarray | |
offset: np.ndarray | |
def __add__(self, other): | |
return type(self)(matrix=self.matrix @ other.matrix, | |
offset=other.matrix @ self.offset + other.offset) | |
def __call__(self, image: np.ndarray, order=1, cval=-1000, output_shape=None, **opts): | |
t = self | |
if image.ndim > t.ndim: | |
t = self.extend(image.ndim) | |
return affine_transform(image, matrix=t.matrix, offset=t.offset, | |
output_shape=output_shape, order=order, cval=cval, **opts) | |
@property | |
def ndim(self): | |
return len(self.matrix) | |
def extend(self, ndim): | |
if ndim > self.ndim: | |
m = np.eye(ndim, dtype='float64') | |
o = np.zeros(ndim, dtype='float64') | |
s = ndim - self.ndim | |
m[s:, s:] = self.matrix | |
o[s:] = self.offset | |
return type(self)(matrix=m, offset=o) | |
return self | |
@classmethod | |
def identity(cls, dims=3): | |
return cls(matrix=np.eye(dims, dtype='float64'), offset=np.zeros(dims, dtype='float64')) | |
def __repr__(self): | |
def prepend_lines(text, prefix): | |
return ('\n' + prefix).join(text.split('\n')) | |
matrix_repr = prepend_lines(str(self.matrix), '\t ') | |
offset_repr = str(self.offset) | |
return f"{type(self).__name__}(\n\tmatrix={matrix_repr},\n\toffset={offset_repr}\n)" | |
__str__ = __repr__ | |
def rotate(input_shape, angle, axis) -> AffineTransform: | |
""" rotate 3d tensor along given axis in 3D """ | |
angle = np.pi / 180 * angle | |
cos = math.cos(angle) | |
sin = math.sin(angle) | |
iz, iy, ix = input_shape[-3:] | |
offset = np.zeros((3,), dtype='float64') | |
if axis == 0: | |
matrix = np.array([[1, 0, 0], | |
[0, cos, sin], | |
[0, -sin, cos]], dtype='float64') | |
elif axis == 1: | |
matrix = np.array([[cos, 0, -sin], | |
[0, 1, 0], | |
[sin, 0, cos]], dtype='float64') | |
elif axis == 2: | |
matrix = np.array([[cos, sin, 0], | |
[-sin, cos, 0], | |
[0, 0, 1]], dtype='float64') | |
else: | |
raise ValueError() | |
offset[0] = iz / 2.0 - 0.5 | |
offset[1] = iy / 2.0 - 0.5 | |
offset[2] = ix / 2.0 - 0.5 | |
offset = np.dot(matrix, offset) | |
tmp = np.zeros((3,), dtype='float64') | |
tmp[0] = iz / 2.0 - 0.5 | |
tmp[1] = iy / 2.0 - 0.5 | |
tmp[2] = ix / 2.0 - 0.5 | |
offset = tmp - offset | |
return AffineTransform(matrix=matrix, offset=offset).extend(len(input_shape)) | |
def scale(input_shape, factor, center=True) -> AffineTransform: | |
""" center scale """ | |
f = np.asarray(factor) | |
assert f.shape[0] == 3 | |
s = np.asarray(input_shape) | |
ndim = s.shape[0] | |
z = np.ones(ndim) | |
z[-3:] = f | |
z = 1 / z | |
m = np.eye(ndim) * z | |
if center: | |
o = (s - m @ s) / 2 | |
else: | |
o = np.zeros(len(input_shape)) | |
return AffineTransform(matrix=m, offset=o) | |
def resize(image_shape, target_shape): | |
return scale(image_shape, np.asarray(target_shape) / image_shape, center=False) | |
def crop_target_context(*, image_shape, image_scale, store_context, target_context) -> (AffineTransform, np.array): | |
crop_pix_each_size = (np.asarray(store_context) - np.asarray(target_context)) / np.asarray(image_scale) | |
orig_shape = np.asarray(image_shape) | |
small_shape = orig_shape - crop_pix_each_size * 2 | |
trf = scale(image_shape, orig_shape / small_shape) | |
return trf, small_shape | |
def resize_and_crop(*, image_shape, target_shape, image_scale, store_context, target_context) -> AffineTransform: | |
context_crop_trf, context_crop_shape = crop_target_context(image_shape=image_shape, image_scale=image_scale, | |
store_context=store_context, | |
target_context=target_context) | |
final_trf = context_crop_trf + scale(image_shape, np.asarray(target_shape) / context_crop_shape, center=False) | |
return final_trf |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment