Created
July 6, 2012 03:09
-
-
Save emberian/3057849 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/***************************************************************************/ | |
/* An ultimate power routine. Given two IEEE double machine numbers y,x */ | |
/* it computes the correctly rounded (to nearest) value of X^y. */ | |
/***************************************************************************/ | |
double | |
SECTION | |
__ieee754_pow(double x, double y) { | |
double z,a,aa,error, t,a1,a2,y1,y2; | |
#if 0 | |
double gor=1.0; | |
#endif | |
mynumber u,v; | |
int k; | |
int4 qx,qy; | |
v.x=y; | |
u.x=x; | |
if (v.i[LOW_HALF] == 0) { /* of y */ | |
qx = u.i[HIGH_HALF]&0x7fffffff; | |
/* Checking if x is not too small to compute */ | |
if (((qx==0x7ff00000)&&(u.i[LOW_HALF]!=0))||(qx>0x7ff00000)) return NaNQ.x; | |
if (y == 1.0) return x; | |
if (y == 2.0) return x*x; | |
if (y == -1.0) return 1.0/x; | |
if (y == 0) return 1.0; | |
} | |
/* else */ | |
if(((u.i[HIGH_HALF]>0 && u.i[HIGH_HALF]<0x7ff00000)|| /* x>0 and not x->0 */ | |
(u.i[HIGH_HALF]==0 && u.i[LOW_HALF]!=0)) && | |
/* 2^-1023< x<= 2^-1023 * 0x1.0000ffffffff */ | |
(v.i[HIGH_HALF]&0x7fffffff) < 0x4ff00000) { /* if y<-1 or y>1 */ | |
double retval; | |
SET_RESTORE_ROUND (FE_TONEAREST); | |
z = log1(x,&aa,&error); /* x^y =e^(y log (X)) */ | |
t = y*134217729.0; | |
y1 = t - (t-y); | |
y2 = y - y1; | |
t = z*134217729.0; | |
a1 = t - (t-z); | |
a2 = (z - a1)+aa; | |
a = y1*a1; | |
aa = y2*a1 + y*a2; | |
a1 = a+aa; | |
a2 = (a-a1)+aa; | |
error = error*ABS(y); | |
t = __exp1(a1,a2,1.9e16*error); /* return -10 or 0 if wasn't computed exactly */ | |
retval = (t>0)?t:power1(x,y); | |
return retval; | |
} | |
if (x == 0) { | |
if (((v.i[HIGH_HALF] & 0x7fffffff) == 0x7ff00000 && v.i[LOW_HALF] != 0) | |
|| (v.i[HIGH_HALF] & 0x7fffffff) > 0x7ff00000) | |
return y; | |
if (ABS(y) > 1.0e20) return (y>0)?0:1.0/0.0; | |
k = checkint(y); | |
if (k == -1) | |
return y < 0 ? 1.0/x : x; | |
else | |
return y < 0 ? 1.0/0.0 : 0.0; /* return 0 */ | |
} | |
qx = u.i[HIGH_HALF]&0x7fffffff; /* no sign */ | |
qy = v.i[HIGH_HALF]&0x7fffffff; /* no sign */ | |
if (qx >= 0x7ff00000 && (qx > 0x7ff00000 || u.i[LOW_HALF] != 0)) return NaNQ.x; | |
if (qy >= 0x7ff00000 && (qy > 0x7ff00000 || v.i[LOW_HALF] != 0)) | |
return x == 1.0 ? 1.0 : NaNQ.x; | |
/* if x<0 */ | |
if (u.i[HIGH_HALF] < 0) { | |
k = checkint(y); | |
if (k==0) { | |
if (qy == 0x7ff00000) { | |
if (x == -1.0) return 1.0; | |
else if (x > -1.0) return v.i[HIGH_HALF] < 0 ? INF.x : 0.0; | |
else return v.i[HIGH_HALF] < 0 ? 0.0 : INF.x; | |
} | |
else if (qx == 0x7ff00000) | |
return y < 0 ? 0.0 : INF.x; | |
return NaNQ.x; /* y not integer and x<0 */ | |
} | |
else if (qx == 0x7ff00000) | |
{ | |
if (k < 0) | |
return y < 0 ? nZERO.x : nINF.x; | |
else | |
return y < 0 ? 0.0 : INF.x; | |
} | |
return (k==1)?__ieee754_pow(-x,y):-__ieee754_pow(-x,y); /* if y even or odd */ | |
} | |
/* x>0 */ | |
if (qx == 0x7ff00000) /* x= 2^-0x3ff */ | |
{if (y == 0) return NaNQ.x; | |
return (y>0)?x:0; } | |
if (qy > 0x45f00000 && qy < 0x7ff00000) { | |
if (x == 1.0) return 1.0; | |
if (y>0) return (x>1.0)?huge*huge:tiny*tiny; | |
if (y<0) return (x<1.0)?huge*huge:tiny*tiny; | |
} | |
if (x == 1.0) return 1.0; | |
if (y>0) return (x>1.0)?INF.x:0; | |
if (y<0) return (x<1.0)?INF.x:0; | |
return 0; /* unreachable, to make the compiler happy */ | |
} | |
#ifndef __ieee754_pow | |
strong_alias (__ieee754_pow, __pow_finite) | |
#endif | |
/**************************************************************************/ | |
/* Computing x^y using more accurate but more slow log routine */ | |
/**************************************************************************/ | |
static double | |
SECTION | |
power1(double x, double y) { | |
double z,a,aa,error, t,a1,a2,y1,y2; | |
z = my_log2(x,&aa,&error); | |
t = y*134217729.0; | |
y1 = t - (t-y); | |
y2 = y - y1; | |
t = z*134217729.0; | |
a1 = t - (t-z); | |
a2 = z - a1; | |
a = y*z; | |
aa = ((y1*a1-a)+y1*a2+y2*a1)+y2*a2+aa*y; | |
a1 = a+aa; | |
a2 = (a-a1)+aa; | |
error = error*ABS(y); | |
t = __exp1(a1,a2,1.9e16*error); | |
return (t >= 0)?t:__slowpow(x,y,z); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment