Skip to content

Instantly share code, notes, and snippets.

@embg
Forked from moloned/Makefile
Created July 7, 2016 21:14
Show Gist options
  • Save embg/2e596063c5be7551302456d4f39ea023 to your computer and use it in GitHub Desktop.
Save embg/2e596063c5be7551302456d4f39ea023 to your computer and use it in GitHub Desktop.
//
// levmarq.cpp
//
// This file contains an implementation of the Levenberg-Marquardt algorithm
// for solving least-squares problems, together with some supporting routines
// for Cholesky decomposition and inversion. No attempt has been made at
// optimization. In particular, memory use in the matrix routines could be
// cut in half with a little effort (and some loss of clarity).
//
// It is assumed that the compiler supports variable-length arrays as
// specified by the C99 standard.
//
// Ron Babich, May 2008
//
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//
// 25 Mar 2015 : Modified by David Moloney Movidius Ltd.
//
// #ifdef'ed code to get it to compile by removing requirement for Variable Length Arrays (VLAs) unsupported except for gcc
// added ldl_cholesky
//
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#include "levmarq.h"
#define TOL 1e-30 // smallest value allowed in cholesky_decomp()
// default values for levmarq()
//
void levmarq_init(LMstat *lmstat) {
lmstat->verbose = 0;
lmstat->max_it = 10000;
lmstat->init_lambda = 0.0001;
lmstat->up_factor = 10;
lmstat->down_factor = 10;
lmstat->target_derr = 1e-12;
} // levmarq_init()
// perform least-squares minimization using the Levenberg-Marquardt using following parameters:
//
// npar number of parameters
// par array of parameters to be varied
// ny number of measurements to be fit
// y array of measurements
// dysq array of error in measurements, squared
// (set dysq=NULL for unweighted least-squares)
// func function to be fit
// grad gradient of "func" with respect to the input parameters
// fdata pointer to any additional data required by the function
// lmstat pointer to the "status" structure, where minimization parameters
// are set and the final status is returned.
//
// Before calling levmarq, several of the parameters in lmstat must be set.
// For default values, call levmarq_init(lmstat).
//
#ifdef __NO_VLA__
int levmarq(int npar, double *par, int ny, double *y, double *dysq, double(*func)(double *, int, void *), void(*grad)(double *, double *, int, void *), void *fdata, LMstat *lmstat) {
double** h;
double** ch;
double* g;
double* d;
double* delta;
double* newpar;
#else
int levmarq(int npar, double *par, int ny, double *y, double *dysq, double (*func)(double *, int, void *), void(*grad)(double *, double *, int, void *), void *fdata, LMstat *lmstat) {
double h[npar][npar], ch[npar][npar];
double g[npar], d[npar], delta[npar], newpar[npar];
#endif
int x, i, j, it, nit, ill, verbose;
double lambda, up, down, mult, weight, err, newerr, derr, target_derr;
verbose = lmstat->verbose;
nit = lmstat->max_it;
lambda = lmstat->init_lambda;
up = lmstat->up_factor;
down = 1 / lmstat->down_factor;
target_derr = lmstat->target_derr;
weight = 1;
derr = newerr = 0; // to avoid compiler warnings
// calculate the initial error ("chi-squared")
err = error_func(par, ny, y, dysq, func, fdata);
// main iteration
for (it = 0; it<nit; it++) {
// calculate the approximation to the Hessian and the "derivative" d
for (i = 0; i<npar; i++) {
d[i] = 0;
for (j = 0; j <= i; j++) h[i][j] = 0;
}
for (x = 0; x<ny; x++) {
if (dysq) weight = 1 / dysq[x]; // for weighted least-squares
grad(g, par, x, fdata);
for (i = 0; i<npar; i++) {
d[i] += (y[x] - func(par, x, fdata))*g[i] * weight;
for (j = 0; j <= i; j++) h[i][j] += g[i] * g[j] * weight;
}
}
//
// make a step "delta." If the step is rejected, increase lambda and try again
//
mult = 1 + lambda;
ill = 1; // ill-conditioned?
while (ill && (it<nit)) {
for (i = 0; i<npar; i++) h[i][i] = h[i][i] * mult;
ill = ll_cholesky(npar, ch, h);
if (!ill) {
solve_axb_cholesky(npar, ch, delta, d);
for (i = 0; i<npar; i++) newpar[i] = par[i] + delta[i];
newerr = error_func(newpar, ny, y, dysq, func, fdata);
derr = newerr - err;
ill = (derr > 0);
}
if (verbose) printf("it = %4d, lambda = %10g, err = %10g, derr = %10g\n", it, lambda, err, derr);
if (ill) {
mult = (1 + lambda*up) / (1 + lambda);
lambda *= up;
it++;
}
}
for (i = 0; i<npar; i++) par[i] = newpar[i];
err = newerr;
lambda *= down;
if ((!ill) && (-derr<target_derr)) break;
}
lmstat->final_it = it;
lmstat->final_err = err;
lmstat->final_derr = derr;
return (it == nit);
} // levmarq()
// calculate the error function (chi-squared)
//
double error_func(double *par, int ny, double *y, double *dysq, double(*func)(double *, int, void *), void *fdata) {
int x;
double res, e = 0;
for (x = 0; x<ny; x++) {
res = func(par, x, fdata) - y[x];
if (dysq) e += res*res / dysq[x]; // weighted least-squares
else e += res*res;
}
return e;
} // error_func()
// solve the equation Ax=b for a symmetric positive-definite matrix A,
// using the Cholesky decomposition A=LL^T. The matrix L is passed in "l".
// Elements above the diagonal are ignored.
//
#ifdef __NO_VLA__
void solve_axb_cholesky(int n, double** l, double* x, double* b) {
#else
void solve_axb_cholesky(int n, double l[n][n], double x[n], double b[n]) {
#endif
int i, j;
double sum;
// solve L*y = b for y (where x[] is used to store y)
//
for (i = 0; i<n; i++) {
sum = 0;
for (j = 0; j<i; j++) sum += l[i][j] * x[j];
x[i] = (b[i] - sum) / l[i][i];
}
//
// solve L^T*x = y for x (where x[] is used to store both y and x)
//
for (i = n - 1; i >= 0; i--) {
sum = 0;
for (j = i + 1; j<n; j++) sum += l[j][i] * x[j];
x[i] = (x[i] - sum) / l[i][i];
}
} // solve_axb_cholesky()
// This function takes a symmetric, positive-definite matrix "a" and returns
// its (lower-triangular) Cholesky factor in "l". Elements above the
// diagonal are neither used nor modified. The same array may be passed
// as both l and a, in which case the decomposition is performed in place.
//
#ifdef __NO_VLA__
int ll_cholesky(int n, double** l, double** a) {
#else
int ll_cholesky(int n, double l[n][n], double a[n][n]) {
#endif
int i, j, k;
double sum;
for (i = 0; i<n; i++) {
for (j = 0; j<i; j++) {
sum = 0;
for (k = 0; k<j; k++) sum += l[i][k] * l[j][k];
l[i][j] = (a[i][j] - sum) / l[j][j];
}
sum = 0;
for (k = 0; k<i; k++) sum += l[i][k] * l[i][k];
sum = a[i][i] - sum;
if (sum<TOL) return 1; // not positive-definite
l[i][i] = sqrt(sum);
}
return 0;
} // ll_cholesky()
// A=LDLt Cholesky factorization eliminates sqrts
// http://en.wikipedia.org/wiki/Cholesky_decomposition#LDL_decomposition
//
// implementation
// this code returns the diagonal D matrix along the diagonal of the L matrix in order to save memory
//
int ldl_cholesky(int n, double *L, double *A) {
double s;
int i, j, k;
for (i = 0; i<n; i++) {
for (j = 0; j<(i + 1); j++) {
s = 0.0;
for (k = 0; k<j; k++) s += L[i*n + k] * L[j*n + k] * L[k*n + k]; // s += l_ki * l_kj * d_k
if (i == j) L[i * n + i] = A[i * n + i] - s; // compute diagonal values: d_i = a_ii - s
else L[i * n + j] = (A[i * n + j] - s) / L[j * n + j]; // l_ij = (a_ii - s)/d_i
}
}
return 0;
} // ldl_cholesky()
// levmarq.cpp
// levmarq.h
#include <stdio.h>
#include <math.h>
#ifndef __LEVMARQ__
#define __LEVMARQ__
#define __NO_VLA__
typedef double fp;
typedef struct {
int verbose;
int max_it;
double init_lambda;
double up_factor;
double down_factor;
double target_derr;
int final_it;
double final_err;
double final_derr;
} LMstat;
// function prototypes
//
void levmarq_init(LMstat *lmstat);
double error_func(double *par, int ny, double *y, double *dysq, double(*func)(double *, int, void *), void *fdata);
int ldl_cholesky(int n, double *L, double *A);
#ifdef __NO_VLA__ // Visual C++ doesn't support C99 Variable Length Arrays (VLAs) http://stackoverflow.com/questions/5246900/enabling-vlasvariable-length-arrays-in-ms-visual-c
int levmarq(int npar, double *par, int ny, double *y, double *dysq,
double(*func)(double *, int, void *), // pointer to function to be minimised
void(*grad)(double *, double *, int, void *), // gradient of func wrt input parameters
void *fdata, LMstat *lmstat);
void solve_axb_cholesky(int n, double** l, double* x, double* b);
int ll_cholesky(int n, double** l, double** a);
#else // if the compiler supports VLAs - Only gcc does apparently http://en.wikipedia.org/wiki/Variable-length_array
int levmarq(int npar, double *par, int ny, double *y, double *dysq,
double(*func)(double *, int, void *),
void(*grad)(double *, double *, int, void *),
void *fdata, LMstat *lmstat);
void solve_axb_cholesky(int n, double l[n][n], double x[n], double b[n]);
int ll_cholesky(int n, double l[n][n], double a[n][n]);
#endif
#endif // __LEVMARQ__
// levmarq.h
target:
g++ -o test_levmarq.exe test_levmarq.cpp levmarq.cpp
#include "levmarq.h"
//// function to be fit
////
//double (*func)(double *a, int n, void *y) {
// double x;
// return x;
//}
//
//
//// gradient of "func" with respect to the input parameters
////
//void (*grad)(double *a, double *b, int n, void *z) {
//}
double(*func)(double *, int, void *);
void(*grad)(double *, double *, int, void *);
//
// Test program for levmarq() Levenberg-Marquardt least-squares
// David Moloney Movidius Ltd.
// 25 Mar 2015
//
int main() {
int status = 1;
// perform least-squares minimization using the Levenberg-Marquardt using following parameters:
//
int npar; // number of parameters
double *par; // number of measurements to be fit
int ny; // number of measurements
double *y; // array of measurements
double *dysq = 0; // array of error in measurements, squared (set dysq=NULL for unweighted least-squares)
void *fdata; // pointer to any additional data required by the function
LMstat *lm_params;
//
levmarq_init(lm_params); // use default Levenberg-Marquardt parameters for levmarq()
//
levmarq(npar, par, ny, y, dysq, func, grad, fdata, lm_params);
return status;
} // main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment