Created
November 16, 2012 21:23
-
-
Save emhart/4091050 to your computer and use it in GitHub Desktop.
Blog post on random effects in mixed models
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(lme4) | |
library(ggplot2) | |
#create some levels | |
levs <- as.factor(c("l1","l2","l3","l4","l5")) | |
#set the factor means | |
f_means <- c(6,16,2,10,13) | |
# set individual as a factor | |
ind <- as.factor(paste("i",1:9,sep="")) | |
#Set individual effects | |
i_eff <- seq(-4,4,length=9) | |
#now let's simulate a repeated measure for each individuals | |
idf <- data.frame(matrix(0,ncol=3,nrow=45)) | |
colnames(idf) <- c("size","ind","levs") | |
counter <- 1 | |
for(i in 1:length(levs)){ | |
for(j in 1:length(ind)){ | |
idf$size[counter] <- rnorm(1,f_means[i]+i_eff[j],.3) | |
idf$ind[counter] <- ind[j] | |
idf$levs[counter] <- levs[i] | |
counter <- counter + 1 | |
} | |
} | |
idf$ind <- rep(ind,5) | |
idf$levs <- sort(rep(levs,9)) | |
ggplot(idf,aes(x=levs,y=size,group=ind,colour=ind))+geom_point()+geom_path() | |
m3 <-lmer(size~levs - 1 +(1|ind), data=idf) | |
## Now let's randomize the individuals | |
idf_rand <- idf | |
for(i in 1:5){ | |
idf_rand$ind[idf_rand$levs==levs[i]] <- sample(idf$ind[idf$levs==levs[i]],9,replace=F) | |
} | |
# here we can visualize the data and examine individual effects | |
ggplot(idf_rand,aes(x=levs,y=size,group=ind,colour=ind))+geom_point()+geom_path() | |
#Fit the model and then check the variance term | |
m4 <-lmer(size~levs - 1 +(1|ind), data=idf_rand) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment