Created
January 12, 2022 01:50
-
-
Save emileten/e78322e0747bf7d8e156921f3b83d9a1 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import xarray as xr | |
from xclim import sdba | |
def _datafactory( | |
x, start_time="1950-01-01", variable_name="fakevariable", lon=1.0, lat=1.0 | |
): | |
"""Populate xr.Dataset with synthetic data for testing""" | |
start_time = str(start_time) | |
if x.ndim != 1: | |
raise ValueError("'x' needs dim of one") | |
time = xr.cftime_range( | |
start=start_time, freq="D", periods=len(x), calendar="standard" | |
) | |
out = xr.Dataset( | |
{variable_name: (["time", "lon", "lat"], x[:, np.newaxis, np.newaxis])}, | |
coords={ | |
"index": time, | |
"time": time, | |
"lon": (["lon"], [lon]), | |
"lat": (["lat"], [lat]), | |
}, | |
) | |
# need to set variable units to pass xclim 0.29 check on units | |
out[variable_name].attrs["units"] = "K" | |
return out | |
def test_train_qdm_extrapolation_historical(): | |
"""Check extrapolation in QDM training behaves as expected | |
""" | |
# Setup input data. | |
ref = _datafactory(np.array([2.9, 2.95, 3., 3.1])) | |
hist = _datafactory(np.array([1.5, 1.9, 2, 2.5])) | |
ref_vec = np.arange(3.5,4.5001, 0.001) | |
hist_vec = np.arange(1.5,2.5001, 0.001) | |
ref = _datafactory(ref_vec) | |
hist = _datafactory(hist_vec) | |
# various problems | |
sdba.adjustment.QuantileDeltaMapping.train( | |
ref=ref['fakevariable'], | |
hist=hist['fakevariable'], | |
kind="*", | |
nquantiles=[0.000000001, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99999999999999], | |
group=sdba.Grouper('time') | |
).adjust(hist['fakevariable'], interp='nearest', extrapolation='constant') | |
# | |
# | |
# qdm_exp = sdba.adjustment.QuantileDeltaMapping.train( | |
# ref=ref['fakevariable'], | |
# hist=hist['fakevariable'], | |
# kind="*", | |
# nquantiles=[0., 0.5, 1.] | |
# ) | |
# qdm_exp.adjust(hist['fakevariable'], interp='nearest', extrapolation='nan') | |
# qdm = sdba.adjustment.QuantileDeltaMapping.train( | |
# ref=ref['fakevariable'], | |
# hist=hist['fakevariable'], | |
# kind="*", | |
# nquantiles=[0.5] | |
# ) | |
# output_key = "memory://test_train_qdm/test_output.zarr" | |
# hist_key = "memory://test_train_qdm/hist.zarr" | |
# ref_key = "memory://test_train_qdm/ref.zarr" | |
# | |
# # Load up a fake repo with our input data in the place of big data and cloud | |
# # storage. | |
# repository.write(hist_key, hist) | |
# repository.write(ref_key, ref) | |
# | |
# train_qdm( | |
# historical=hist_key, | |
# reference=ref_key, | |
# out=output_key, | |
# variable="fakevariable", | |
# kind="multiplicative", | |
# ) | |
# | |
# assert QuantileDeltaMapping.from_dataset(repository.read(output_key)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment