Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save emillykkejensen/aa7535c29538a956d5b9c41e31f731a1 to your computer and use it in GitHub Desktop.
Save emillykkejensen/aa7535c29538a956d5b9c41e31f731a1 to your computer and use it in GitHub Desktop.
Multi-Label, Multi-Class Text Classification with BERT, Transformer and Keras
#######################################
### -------- Load libraries ------- ###
# Load Huggingface transformers
from transformers import TFBertModel, BertConfig, BertTokenizerFast
# Then what you need from tensorflow.keras
from tensorflow.keras.layers import Input, Dropout, Dense
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.initializers import TruncatedNormal
from tensorflow.keras.losses import CategoricalCrossentropy
from tensorflow.keras.metrics import CategoricalAccuracy
from tensorflow.keras.utils import to_categorical
# And pandas for data import + sklearn because you allways need sklearn
import pandas as pd
from sklearn.model_selection import train_test_split
#######################################
### --------- Import data --------- ###
# Import data from csv
data = pd.read_csv('dev/Fun with BERT/complaints.csv')
# Select required columns
data = data[['Consumer complaint narrative', 'Product', 'Issue']]
# Remove a row if any of the three remaining columns are missing
data = data.dropna()
# Remove rows, where the label is present only ones (can't be split)
data = data.groupby('Issue').filter(lambda x : len(x) > 1)
data = data.groupby('Product').filter(lambda x : len(x) > 1)
# Set your model output as categorical and save in new label col
data['Issue_label'] = pd.Categorical(data['Issue'])
data['Product_label'] = pd.Categorical(data['Product'])
# Transform your output to numeric
data['Issue'] = data['Issue_label'].cat.codes
data['Product'] = data['Product_label'].cat.codes
# Split into train and test - stratify over Issue
data, data_test = train_test_split(data, test_size = 0.2, stratify = data[['Issue']])
#######################################
### --------- Setup BERT ---------- ###
# Name of the BERT model to use
model_name = 'bert-base-uncased'
# Max length of tokens
max_length = 100
# Load transformers config and set output_hidden_states to False
config = BertConfig.from_pretrained(model_name)
config.output_hidden_states = False
# Load BERT tokenizer
tokenizer = BertTokenizerFast.from_pretrained(pretrained_model_name_or_path = model_name, config = config)
# Load the Transformers BERT model
transformer_model = TFBertModel.from_pretrained(model_name, config = config)
#######################################
### ------- Build the model ------- ###
# TF Keras documentation: https://www.tensorflow.org/api_docs/python/tf/keras/Model
# Load the MainLayer
bert = transformer_model.layers[0]
# Build your model input
input_ids = Input(shape=(max_length,), name='input_ids', dtype='int32')
# attention_mask = Input(shape=(max_length,), name='attention_mask', dtype='int32')
# inputs = {'input_ids': input_ids, 'attention_mask': attention_mask}
inputs = {'input_ids': input_ids}
# Load the Transformers BERT model as a layer in a Keras model
bert_model = bert(inputs)[1]
dropout = Dropout(config.hidden_dropout_prob, name='pooled_output')
pooled_output = dropout(bert_model, training=False)
# Then build your model output
issue = Dense(units=len(data.Issue_label.value_counts()), kernel_initializer=TruncatedNormal(stddev=config.initializer_range), name='issue')(pooled_output)
product = Dense(units=len(data.Product_label.value_counts()), kernel_initializer=TruncatedNormal(stddev=config.initializer_range), name='product')(pooled_output)
outputs = {'issue': issue, 'product': product}
# And combine it all in a model object
model = Model(inputs=inputs, outputs=outputs, name='BERT_MultiLabel_MultiClass')
# Take a look at the model
model.summary()
#######################################
### ------- Train the model ------- ###
# Set an optimizer
optimizer = Adam(
learning_rate=5e-05,
epsilon=1e-08,
decay=0.01,
clipnorm=1.0)
# Set loss and metrics
loss = {'issue': CategoricalCrossentropy(from_logits = True), 'product': CategoricalCrossentropy(from_logits = True)}
metric = {'issue': CategoricalAccuracy('accuracy'), 'product': CategoricalAccuracy('accuracy')}
# Compile the model
model.compile(
optimizer = optimizer,
loss = loss,
metrics = metric)
# Ready output data for the model
y_issue = to_categorical(data['Issue'])
y_product = to_categorical(data['Product'])
# Tokenize the input (takes some time)
x = tokenizer(
text=data['Consumer complaint narrative'].to_list(),
add_special_tokens=True,
max_length=max_length,
truncation=True,
padding=True,
return_tensors='tf',
return_token_type_ids = False,
return_attention_mask = True,
verbose = True)
# Fit the model
history = model.fit(
# x={'input_ids': x['input_ids'], 'attention_mask': x['attention_mask']},
x={'input_ids': x['input_ids']},
y={'issue': y_issue, 'product': y_product},
validation_split=0.2,
batch_size=64,
epochs=10)
#######################################
### ----- Evaluate the model ------ ###
# Ready test data
test_y_issue = to_categorical(data_test['Issue'])
test_y_product = to_categorical(data_test['Product'])
test_x = tokenizer(
text=data_test['Consumer complaint narrative'].to_list(),
add_special_tokens=True,
max_length=max_length,
truncation=True,
padding=True,
return_tensors='tf',
return_token_type_ids = False,
return_attention_mask = False,
verbose = True)
# Run evaluation
model_eval = model.evaluate(
x={'input_ids': test_x['input_ids']},
y={'issue': test_y_issue, 'product': test_y_product}
)
@emillykkejensen
Copy link
Author

Can you upload the model.predict() part? Or how you can apply model.predict() function for this model in a dataframe of Narratives ?

Predict is the same as evaluate, but without target data (y) - see: https://www.tensorflow.org/api_docs/python/tf/keras/Model#predict

@emillykkejensen
Copy link
Author

Wonderful project @emillykkejensen and appreciate the ease of explanation. I do have a quick question, since we have multi-label and multi-class problem to deal with here, there is a probability that between issue and product labels above, there could be some where we do not have the same # of samples from target / output layers. So following the same pattern as described above, I ran into an issue where the shapes are not matching for labels. Similar to yours, I have not hardcoded the shape of the inputs, so do you have any suggestions to resolve this issue?

ValueError: Shapes (None, 263) and (None, 265) are incompatible

Haven't looked at this for a while, so it's not really fresh in memory sorry. But maybe have a look at your data filter process, looks like you might need to remove some missing’s?

@textclassificationlearner
Copy link

textclassificationlearner commented Jan 23, 2023

Can you upload the model.predict() part? Or how you can apply model.predict() function for this model in a dataframe of Narratives ?

Predict is the same as evaluate, but without target data (y) - see: https://www.tensorflow.org/api_docs/python/tf/keras/Model#predict

I think your tutorial is great. But, similar to other people requesting you to post the prediction code on the towardsdatascience website,
I too could not get predictions, confusion matrix, and classification report working.

Below is my code. I appreciate any help. I am a beginner.
predicted_raw = model.predict({'input_ids':x_test['input_ids']})

y_predicted = numpy.argmax(predicted_raw, axis = 1)

The error is here: y_predicted = numpy.argmax(predicted_raw, axis = 1). The error message says "axis 1 is out of bounds for array of dimension 1" When I change axis to zero. The new error message is "Singleton array 0 cannot be considered a valid collection." I think what the axis=0 error says is that y_predicted is null. I double checked it with an if statement.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment