Last active
August 29, 2015 14:01
-
-
Save empet/960a0ea4040a50091987 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "", | |
"signature": "sha256:3ef7145c7aa9b79a3d9fc1565673db017213f2d09b0e1a3d849f80a0fd20242e" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "heading", | |
"level": 3, | |
"metadata": {}, | |
"source": [ | |
"Binary images generated by a mixture of multivariate Bernoulli distributions" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%matplotlib inline\n", | |
"import matplotlib.pyplot as plt\n", | |
"import numpy as np\n", | |
"import scipy.stats as st\n", | |
"from IPython.html.widgets import interact\n", | |
"from IPython.display import display" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 1 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
" $X=(X_1, X_2, \\ldots, X_d)\\sim Bern(p_1, p_2, \\ldots, p_d)$ is a multivariate Bernoulli random variable, whose components, $X_i$, are independent Bernoulli random variables of parameters $p_i$, $i=\\overline{1,d}$.\n", | |
"\n", | |
"\n", | |
"$X$ is a model for a binary image of $d$ pixels.\n", | |
"We take $d=r^2$, and define a mixture of three multivariate Bernoulli random variables:\n", | |
"\n", | |
"$$Y=\\pi_1X^{(1)}+\\pi_2X^{(2)}+\\pi_3 X^{(3)}, \\quad \\pi_i\\in(0,1)\\,\\,\n", | |
"\\sum_{k=1}^3\\pi_i=1,$$ \n", | |
"\n", | |
"\n", | |
"\n", | |
"$$X^{(k)}=(X^{(k)}_1,X^{(k)}_2,\\ldots, X^{(k)}_{d})\\sim \\mbox{Bern}(p_{k1},p_{k2}, \\ldots, p_{k d})$$\n", | |
"The parameters $p_{ki}$ of the r.v. $X^{(k)}_i$, $k=\\overline{1,3}$, $i=\\overline{1,d}$, are uniformly distributed \n", | |
"on a subinterval of $(0,1)$.\n", | |
"\n", | |
"In our example, the parameters associated to the random vectors $X^{(k)}$, $k=1,2,3$, are uniformly distributed respectively\n", | |
" in the intervals, $(0.2, 0.8)$, $(0.35, 0.75)$, $(0.3, 0.9)$.\n", | |
"\n", | |
"Simulating this mixture, we generate n binary images, and display them progressively with `interact`.\n", | |
"\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"def simDiscrete(pr):\n", | |
" k=0\n", | |
" F=pr[0]\n", | |
" u=np.random.random()\n", | |
" while(u>F):\n", | |
" k+=1\n", | |
" F=F+pr[k]\n", | |
" return k" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"plt.rcParams['figure.figsize'] = 4, 4\n", | |
"\n", | |
"Pi=[0.37, 0.41, 0.22]\n", | |
"\n", | |
"d=2500\n", | |
"r=50\n", | |
"p=np.zeros((3,d))\n", | |
"sint=[(0.2, 0.8), (0.35, 0.75), (0.3, 0.9)]# subintervals for parameters\n", | |
"for k in range(3):\n", | |
" p[k]=st.uniform.rvs(size=d, loc=sint[k][0], scale=sint[k][1]-sint[k][0] )\n", | |
"\n", | |
"\n", | |
"def RandomImage(n): \n", | |
" fig, ax=plt.subplots()\n", | |
" k=simDiscrete(Pi)\n", | |
" pixels=map(lambda (pr): st.bernoulli.rvs(pr), p[k]) \n", | |
" img=np.array(pixels).reshape((r,r)) \n", | |
" ax.imshow(img, origin='upper', cmap='gray', interpolation='nearest') " | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"interact(RandomImage, n=(1,20))" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 5, | |
"text": [ | |
"<function __main__.RandomImage>" | |
] | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAP0AAAD+CAYAAADxoQNSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFFFJREFUeJzt3U1sE0cbB/C/I5A4FBG1VZaKUKUfxBBCcVRabiXBcnIA\nQtRIERwiBFx7gEM/6IWoBzDlUAW1x7ayOEBzogi1qaiwaRHqh1AjSqFKD0G4qW2JhrQCQYuSeQ+v\n8JuYjXc8mZldv/P/SZZI2J15du0nuzOemY0JIQSIyBkNYQdARHYx6Ykcw6QncgyTnsgxTHoixzDp\niRyzqKQfHR3F2rVrsWbNGhw7dkxXTERkUEz1e/qZmRnE43F8/fXXWLVqFV555RWcOnUK69at0x0j\nEWmkfKX/4Ycf8OKLL6KlpQVLly7Frl278Pnnn+uMjYgMWKK64+TkJFavXl3+ubm5Gd9///28bTo7\nO3Hx4kX16IhI2UI38cpX+lgsFrjNxYsXIYTA4cOHFwygkhBC6WWqHJkYVY9LxUJxPzrHJo9L93sT\nFLOO96qWc6ijbFN0xqec9KtWrUI+ny//nM/n0dzc/Nh2Q0NDyOVyGBoaUq2KiHQSih4+fCief/55\nMTExIf755x+xceNGcf369XnbAJj3sqmybr9XNYcPH5Yu22TMsqrFK1uXyktXXTr2UaUaj0rZsvWb\nfG+U2/RLlizBhx9+iJ6eHszMzGD//v3/Vz33nZ2dYYdQk3qLl8Kj/JWdVOEV7X6DVQXW7Uc1HlPH\n5RezqXMmc35kyMSn8l6YfP8qyZx31fdG5rOi672otFB8HJFH5BgmPZFjlNv0subeYui6ZbN5G+xH\n5VZUF13HrnKbqXqObTYBdN2Wy1Bp5ulqJiwGr/REjmHSEzmGSU/kGONt+rlMte1Ut1Gl0r6SaUOH\nvY0Km+1aXWx+lWzzuGTxSk/kGCY9kWOY9ESOYdITOcZqR17UxlPXA5uDTYKoDoYJ2kd1P5sduro6\nKG0O5FoIr/REjmHSEzmGSU/kmNAH56i0cUxOWghzUoeu9p5qPKb6BmyeL5sDwHTso1pO0LFXO0Ze\n6Ykcw6QncgyTnsgxTHoix4Q+OMdW55Ff/aqdW7pmtZlaWNHUQBJd50KVTDmmBr/YnP1pegAPr/RE\njmHSEzmGSU/kmNAH58jQ1WbVUbds/bomWpiasKHSPtd1DDJ0DYpS3cbm5DCVclVjBnilJ3IOk57I\nMUx6Iscw6YkcY7wjr9bOnyjNVJJl8wmwYa7+Y/Oc2lzq2+aS4TJ0dJhylh0RlTHpiRzDpCdyjNVH\nVfsxtXKOzXZ21MqO2mo/NgdXmfocmIxHZpVfnRObeKUncgyTnsgxgUm/b98+eJ6HDRs2lH83NTWF\nVCqF1tZWdHd3Y3p62miQRKRPYNLv3bsXo6Oj836XTqeRSqUwPj6OZDKJdDptLEAi0kxImJiYEO3t\n7eWf4/G4KBaLQgghCoWCiMfjvvtVFg9A6aWLTLmm4lEtV9e5sHVcuraRiS/sc6oSj+p5r3Wfatso\ntelLpRI8zwMAeJ6HUqmkUgwRhWDRX9nFYrGqXxUMDQ0ttgoiCpDL5ZDL5eQ2lrm18Lu9LxQKQggh\n/vjjD97eK9QtW66uc2HruHRtIxNf2OdUJR7V817rPtW2Ubq97+3tRSaTAQBkMhn09fUtuO2jO4FY\nLAYhhNJrbhmyLz+V5apuI0MmnqB9VPfzI3NcOs6p334q28h8DlSpvMcy50P1860Ss8p7VT4WEVDr\n7t27cfHiRdy+fRue5+G9997Dzp07MTAwgFu3bqGlpQUjIyNobGz0PVGVgatQeYMXk7BBdcuUbWoZ\nY7+6bY14Uy23cj+b5zTsz4Epi1nOKzDpF4NJrx+TvjZhfw5MWUzSc0QekWOY9ESOsXp7L8Pm7ZjJ\nxwfZvKU1dVxh3r6q0rW6TtSaPzJ1yTbzeKUncgyTnsgxTHoix4S+co6MMPsGTLW7/fbz20alfl1t\nVJkydPVdqNSvWq7KfjLnVFe/jemvhHmlJ3IMk57IMUx6Iscw6YkcY/X59Kp0DT5ZzHhl3fv47adr\nmWXVbSqZGrykq0Mw7AFYQXWrbqOjrmrHzSs9kWOY9ESOYdITOSZyj6qWoTpQwhSTA1JU2qi6+gZ0\nTQQxRXUQkq4BRTbXVdDZV8ErPZFjmPREjmHSEzmGSU/kmLqcZVcPgzJUZk6pdkyFOQtRhs34THU+\nmhw4pWu1n2rbz8UrPZFjmPREjmHSEznG6uAck4MpgvaRFbX2sc0Vc3X0i4S96m/QACNVulbVVV0d\nSednjFd6Iscw6Ykcw6QncgyTnsgxdTE4R4VqZ5/NpbPDpNLpZHKgi6mlolXp6sRU2c/0o7h4pSdy\nDJOeyDFMeiLHRG41XF2TV2TL1sHmyq26Hn0lU7au825ytR8dTE6m0YWDc4hIWWDS5/N5dHV1Yf36\n9Whvb8eJEycAAFNTU0ilUmhtbUV3dzemp6eNB0tEixcTAfcNxWIRxWIRiUQCd+/excsvv4wzZ87g\n008/xdNPP4233noLx44dw507d5BOp+cXHovVPO9X1+29ycUqVeoyeXsvI+q39ypMPQ037Pp1neeF\nygm80q9cuRKJRAIA8MQTT2DdunWYnJzE2bNnsWfPHgDAnj17cObMGaVAiciuwCv9XDdv3sSWLVtw\n7do1PPvss7hz5w6A//5FefLJJ8s/lws3NJhC119mXXcDNpeGDnOAjGrdNp+/ruv9C/MuzFTH7CPS\nHXl3795Ff38/hoeHsXz58scCCLP3lYjkSSX9w4cP0d/fj8HBQfT19QEAPM9DsVgEABQKBTQ1NQWW\nk8vl1CMlIi0Ck14Igf3796OtrQ0HDhwo/763txeZTAYAkMlkyn8Mquns7FSPlIi0CGzTX7p0Ca+9\n9hpeeuml8i380aNH8eqrr2JgYAC3bt1CS0sLRkZG0NjYOL9wQz3zuth8ZLLNeGTL1kFX2zfM1X9M\ntsVN9cHI9L8stE1NHXm1YtKHE49s2Tow6auXE8Wk54g8Iscw6Ykcw6QnckzoK+fU42AKFbpWVdEl\nzJVzZPbzq0vXo8KCylUtO2pDvxfCKz2RY5j0RI5h0hM5xupjrfyotHl0rRZq87FIuuh6dJKu1Wx0\nPQYsanM3dK4+G7SP7f4oXumJHMOkJ3IMk57IMUx6IsdEbglsk0ytSGJyooUKXZ1iYa90VMnU+Qp7\nQJGpDsGF8EpP5BgmPZFjmPREjgl9wo2KKAxwqDUe2f2Cygn7cdEy5aiUa2ohEJsLt+gaECZjMf0k\nvNITOYZJT+QYJj2RY0L/nt7UwggmJ3Xo+l61ks1FIVTOj80nuMjUH/aipTKiNrYA4JWeyDlMeiLH\nMOmJHMOkJ3JM6B15lUyuKKoy0EW1HJtPbKnHgUAq+9h8kk/Un7wku58fXumJHMOkJ3IMk57IMVaf\nWuvHZns0zKeemhzcYevpwDafAKtatspx6mpD23xqbVA5fGotEZUx6Ykcw6QncgyTnsgxdblyjq6O\nKl0dL6qdNaY6nUwN8rE5y87mije6hNlxXQte6YkcUzXpHzx4gM2bNyORSKCtrQ2HDh0CAExNTSGV\nSqG1tRXd3d2Ynp62EiwRLV7VpF+2bBmy2SzGxsZw9epVZLNZXLp0Cel0GqlUCuPj40gmk0in07bi\nJaLFEpLu3bsnNm3aJK5duybi8bgoFotCCCEKhYKIx+O++1QWD0DpJUNlH5Vydcaj69hNxaNSrswx\n6NpGV3y6Xqps50Bgm352dhaJRAKe56Grqwvr169HqVSC53kAAM/zUCqVgoohoogI7L1vaGjA2NgY\n/vrrL/T09CCbzc77/1gspm06IxGZJ/2V3YoVK7Bt2zZcuXIFnuehWCxi5cqVKBQKaGpqWnC/oaEh\nHXESURW5XE5626oTbm7fvo0lS5agsbER9+/fR09PDw4fPoyvvvoKTz31FN5++22k02lMT0/7duZV\nDvoPe9KJinqYjCHD1KScqC0WUsnmXajqe2V7slHVpP/555+xZ88ezM7OYnZ2FoODg3jzzTcxNTWF\ngYEB3Lp1Cy0tLRgZGUFjY6NvELWeCJOPNQ5zVpTNeEx90FX/COhKVlvHqUrXe6zjD3213DM+tZZJ\nbz8eJn046iXpOSKPyDFMeiLHWL29N7nSrWw8tbLZORP2SrdBdZns1NTFVOeoyaaEqXh4e09EAJj0\nRM5h0hM5hklP5JjQH2ulq5PHZseZSt269jM5jkHHPiY7vHStwGOqLplydNWlOqYD4JWeyDlMeiLH\nMOmJHGO8Ta+jjWdzNVVd4+FVhN1GDdrG1GOgdZZjqt+mHuKRndHKKz2RY5j0RI5h0hM5hklP5JjQ\nB+eodF6pDHhQFfZiDrpmBuo4z/W4BJnqNlGb/anzM8crPZFjmPREjmHSEzkm9Da9Lrra/Srl2Gz/\n6RosFOYKMzaPwSaTi17qHDTGKz2RY5j0RI5h0hM5hklP5BjjHXm1PsvO5io0usoJ+9lspjofdQ0M\nMrX0uK5zEfbS7JVU4+EsOyLyxaQncgyTnsgxdTE4x9QEFxMrljxi6mmltp56KsvUZCiTg6JkYrY5\nccfm05QBXumJnMOkJ3IMk57IMUx6IsdYfT697D5BbD76SrUcGfVWl8mVc1SE/Zx7Gbre41oHe1XL\nPV7piRwjlfQzMzPo6OjAjh07AABTU1NIpVJobW1Fd3c3pqenjQZJRPpIJf3w8DDa2trKtxTpdBqp\nVArj4+NIJpNIp9NGgyQijUSAfD4vksmkuHDhgti+fbsQQoh4PC6KxaIQQohCoSDi8bjvvhLFCwBa\nXjLl6qpbV10qbNZls26V864rZl1MHnut56da3YFX+oMHD+L48eNoaPjfpqVSCZ7nAQA8z0OpVAoq\nhogiouow3HPnzqGpqQkdHR3I5XK+28Risaq9j0NDQ+V/d3Z2orOzUyVOIgowN9eqqfqV3bvvvouT\nJ09iyZIlePDgAf7++2+8/vrr+PHHH5HL5bBy5UoUCgV0dXXh119/fbxwia/sTH01YvIhFbrqCjo3\nfsJ8MqrJum0u1KnjXOisy0QOKH9ld+TIEeTzeUxMTOD06dPYunUrTp48id7eXmQyGQBAJpNBX1+f\nlqCJyLyaZtk9+ov0zjvvYGBgAB9//DFaWlowMjJS0/5zqVx9Tf2lVi3bbx9TM6dk4tMVj81zIfM5\nMHW+TH4uTc2AVP08AZZH5IW91JOt22C/snUlvc14TN26m7zltdlkkqlb53r1OuoCOCKPyDlMeiLH\nhD7hJsxVX1Tpul0Ns7nhx9a5D7tvx9TqvKp16/pWKajcR3ilJ3IMk57IMUx6Iscw6YkcY3UJ7KgN\nibQ5NFZ1UI1MXSrl6PqeXqVcP1Hr0LX5OTC1cs5CeKUncgyTnsgxTHoix4T+WCtTA110taFl9tP1\neG2bEzbCfHy0Lrr6baL2/pkew88rPZFjmPREjmHSEzmGSU/kmNA78nQxtWiFyYUjwlzXT4Wu2V82\nHxllcxUh1c+KyU5nP7zSEzmGSU/kGCY9kWOMt+lrbb/pahepto/DfESxzbadyYk7KmyuIqSrrjDX\n4eeEGyKSxqQncgyTnsgxTHoixxjvyJPtXPDbvpZtdHXAqQh7CeyorToTxOSAmTA7R2VEYaYir/RE\njmHSEzmGSU/kGKuDc2w+Gkh2v6ByVFZy9SvHZD+Eyccf18rm4CqZcvyY+hzIiEI/BK/0RI5h0hM5\nhklP5BgmPZFjjCe9EALZbFa64yEWiwW+hBCPvWT284ut8vVILpdbcJugcmWPy69s1boexbtQXSpk\n4q2k+t7oiNcvZj8y532hfR59lnUOlpE5X0HHWcs5s3Kln/uBrBf1FnO9xVuv/h/OM2/viRzDpCdy\njTBoy5YtAgBffPFl+bVly5YF8zImdPZIEFHk8faeyDFMeiLHGE360dFRrF27FmvWrMGxY8dMVqVs\n37598DwPGzZsKP9uamoKqVQKra2t6O7uxvT0dIgRPi6fz6Orqwvr169He3s7Tpw4ASC6cT948ACb\nN29GIpFAW1sbDh06BCC68c41MzODjo4O7NixA0B9xBzEWNLPzMzgjTfewOjoKK5fv45Tp07hxo0b\npqpTtnfvXoyOjs77XTqdRiqVwvj4OJLJJNLpdEjR+Vu6dCk++OAD/PLLL/juu+/w0Ucf4caNG5GN\ne9myZchmsxgbG8PVq1eRzWZx6dKlyMY71/DwMNra2sqDX+oh5kCmeu4vX74senp6yj8fPXpUHD16\n1FR1izIxMSHa29vLP8fjcVEsFoUQQhQKBRGPx8MKTcrOnTvF+fPn6yLue/fuiU2bNolr165FPt58\nPi+SyaS4cOGC2L59uxCi/j4bfoxd6ScnJ7F69eryz83NzZicnDRVnValUgme5wEAPM9DqVQKOaKF\n3bx5Ez/99BM2b94c6bhnZ2eRSCTgeV65aRLleAHg4MGDOH78OBoa/pcmUY9ZhrGkD3OhSp0WOxbc\npLt376K/vx/Dw8NYvnz5vP+LWtwNDQ0YGxvD77//jm+++QbZbHbe/0ct3nPnzqGpqQkdHR0LjrOP\nWsyyjCX9qlWrkM/nyz/n83k0Nzebqk4rz/NQLBYBAIVCAU1NTSFH9LiHDx+iv78fg4OD6OvrA1Af\nca9YsQLbtm3DlStXIh3v5cuXcfbsWTz33HPYvXs3Lly4gMHBwUjHLMtY0m/atAm//fYbbt68iX//\n/RefffYZent7TVWnVW9vLzKZDAAgk8mUkyoqhBDYv38/2tracODAgfLvoxr37du3y73c9+/fx/nz\n59HR0RHZeAHgyJEjyOfzmJiYwOnTp7F161acPHky0jFLM9lh8MUXX4jW1lbxwgsviCNHjpisStmu\nXbvEM888I5YuXSqam5vFJ598Iv7880+RTCbFmjVrRCqVEnfu3Ak7zHm+/fZbEYvFxMaNG0UikRCJ\nREJ8+eWXkY376tWroqOjQ2zcuFFs2LBBvP/++0IIEdl4K+VyObFjxw4hRP3EXA2H4RI5hiPyiBzD\npCdyDJOeyDFMeiLHMOmJHMOkJ3IMk57IMUx6Isf8B3+vKIjgD6JgAAAAAElFTkSuQmCC\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0xa8d3860>" | |
] | |
} | |
], | |
"prompt_number": 5 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"from IPython.core.display import HTML\n", | |
"def css_styling():\n", | |
" styles = open(\"./styles/custom.css\", \"r\").read()\n", | |
" return HTML(styles)\n", | |
"css_styling()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<style>\n", | |
" @font-face {\n", | |
" font-family: \"Computer Modern\";\n", | |
" src: url('http://mirrors.ctan.org/fonts/cm-unicode/fonts/otf/cmunss.otf');\n", | |
" }\n", | |
" div.cell{\n", | |
" width:800px;\n", | |
" margin-left:16% !important;\n", | |
" margin-right:auto;\n", | |
" }\n", | |
" h1 {\n", | |
" font-family: Helvetica, serif;\n", | |
" }\n", | |
" h4{\n", | |
" margin-top:12px;\n", | |
" margin-bottom: 3px;\n", | |
" }\n", | |
" div.text_cell_render{\n", | |
" font-family: Computer Modern, \"Helvetica Neue\", Arial, Helvetica, Geneva, sans-serif;\n", | |
" line-height: 145%;\n", | |
" font-size: 130%;\n", | |
" width:800px;\n", | |
" margin-left:auto;\n", | |
" margin-right:auto;\n", | |
" }\n", | |
" .CodeMirror{\n", | |
" font-family: \"Source Code Pro\", source-code-pro,Consolas, monospace;\n", | |
" }\n", | |
" .prompt{\n", | |
" display: None;\n", | |
" }\n", | |
" .text_cell_render h5 {\n", | |
" font-weight: 300;\n", | |
" font-size: 22pt;\n", | |
" color: #4057A1;\n", | |
" font-style: italic;\n", | |
" margin-bottom: .5em;\n", | |
" margin-top: 0.5em;\n", | |
" display: block;\n", | |
" }\n", | |
" \n", | |
" .warning{\n", | |
" color: rgb( 240, 20, 20 )\n", | |
" } \n", | |
"</style>\n", | |
"<script>\n", | |
" MathJax.Hub.Config({\n", | |
" TeX: {\n", | |
" extensions: [\"AMSmath.js\"]\n", | |
" },\n", | |
" tex2jax: {\n", | |
" inlineMath: [ ['$','$'], [\"\\\\(\",\"\\\\)\"] ],\n", | |
" displayMath: [ ['$$','$$'], [\"\\\\[\",\"\\\\]\"] ]\n", | |
" },\n", | |
" displayAlign: 'center', // Change this to 'center' to center equations.\n", | |
" \"HTML-CSS\": {\n", | |
" styles: {'.MathJax_Display': {\"margin\": 4}}\n", | |
" }\n", | |
" });\n", | |
"</script>\n" | |
], | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 6, | |
"text": [ | |
"<IPython.core.display.HTML at 0xaa4ba58>" | |
] | |
} | |
], | |
"prompt_number": 6 | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment