Last active
March 20, 2020 03:17
-
-
Save emuccino/8134b6aec8f2de53cbf67fab83495f83 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #initialize our generators; specifying data directories, batch size, and dimension threshold | |
| train_image_directory = 'imagenette2/train' | |
| test_image_directory = 'imagenette2/val' | |
| n_classes = 10 | |
| batch_size = 16 | |
| max_dimension = 512 | |
| #create generators for training and generating | |
| train_generator = ImageGenerator(train_image_directory, batch_size=batch_size, shuffle=True, max_dimension=max_dimension) | |
| test_generator = ImageGenerator(test_image_directory, batch_size=batch_size, max_dimension=max_dimension) | |
| #convert generators into tf.data.Dataset objects for optimization with keras model fit method | |
| train_dataset = tf.data.Dataset.from_generator(train_generator, | |
| (tf.float32, tf.int32), | |
| (tf.TensorShape([None,None,None,3]), tf.TensorShape([None]))) | |
| test_dataset = tf.data.Dataset.from_generator(test_generator, | |
| (tf.float32, tf.int32), | |
| (tf.TensorShape([None,None,None,3]), tf.TensorShape([None]))) | |
| #train and evaluate model | |
| model.fit(train_dataset,validation_data=test_dataset,epochs=10,verbose=1,workers=2,max_queue_size=20) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment