Last active
April 13, 2020 09:34
-
-
Save emuccino/8bb443a942f959f57ebd1ed3d4fe0fba to your computer and use it in GitHub Desktop.
Batch generating functions
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from tensorflow.keras.utils import to_categorical | |
#function for generating latent samples for synthetic data for generator training | |
def generate_latent_samples(n): | |
#generate latent vectors with balanced targets | |
x = {'latent': np.random.normal(size=(n, latent_dim)), | |
'target': to_categorical(np.hstack([np.array([_x for _ in range(n//2)]) for _x in range(2)]),2)} | |
#outputs indicating postive discirmination (target value) | |
y = np.hstack([np.array([[0] for _ in range(n)]), x['target']]) | |
return x, y | |
#function for generating synthetic samples for discriminator training | |
def generate_synthetic_samples(n): | |
latent_x, _ = generate_latent_samples(n) | |
#generate data with balanced targets | |
gen_predict = generator.predict(latent_x) | |
x = dict(zip(generator.output_names, gen_predict)) | |
#outputs indicating negative discirmination | |
y = np.array([[1,0,0] for _ in range(n)]) | |
return x, y | |
#function for generating real samples for discriminator training | |
def generate_real_samples(n): | |
#sample real data with balanced targets | |
samples = [np.random.choice(train_target_df[train_target_df[target] == _y].index, size=n//2) for _y in range(2)] | |
x = {name:np.vstack([train_df[name][sample].values.reshape(-1,1) for y,sample in enumerate(samples)]) for name in data} | |
for name,n_token in n_tokens.items(): | |
x[name] = to_categorical(x[name], n_token) | |
#outputs indicating postive discirmination (target value) | |
y = np.hstack([np.array([[0] for _ in range(n)]), | |
to_categorical(np.hstack([train_target_df[target][sample].values for sample in samples]),2)]) | |
return x, y |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment