Created
July 1, 2020 05:02
-
-
Save emuccino/95e8babe64f62e911d9c536572ebd8fb to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from scipy.special import softmax | |
def get_results(confidence_threshold): | |
print('confidence threshold:',confidence_threshold) | |
predictions = [] | |
confidence = [] | |
exit_level = [] | |
#loop over predictions and determine inference exit device, prediction, and confidence, base upon threshold | |
for i in range(len(x_test)): | |
if device_confidence['end'][i] > confidence_threshold: | |
predictions.append(device_predictions['end'][i]) | |
confidence.append(device_confidence['end'][i]) | |
exit_level.append(0) | |
elif device_confidence['edge'][i] > confidence_threshold: | |
predictions.append(device_predictions['edge'][i]) | |
confidence.append(device_confidence['edge'][i]) | |
exit_level.append(1) | |
else: | |
predictions.append(device_predictions['cloud'][i]) | |
confidence.append(device_confidence['cloud'][i]) | |
exit_level.append(2) | |
predictions = np.array(predictions) | |
confidence = np.array(confidence) | |
exit_level = np.array(exit_level) | |
accuracy = (predictions == y_test).sum() / len(predictions) | |
#percentage of inference on each device | |
n_end = (exit_level == 0).sum() | |
n_edge = (exit_level == 1).sum() | |
n_cloud = (exit_level == 2).sum() | |
#print stats | |
print('acc:',accuracy) | |
print('confidence:',confidence.mean()) | |
print('percent end:',n_end/len(y_test)) | |
print('percent edge:',n_edge/len(y_test)) | |
print('percent cloud:',n_cloud/len(y_test)) | |
print('\n\n') | |
#store test data predictions from each device | |
device_predictions = {} | |
#store prediction confidence from each device | |
device_confidence = {} | |
#end device predictions | |
outputs, offload_to_edge = device_models['end'].predict(x_test) | |
device_predictions['end'] = outputs.argmax(1) | |
device_confidence['end'] = softmax(outputs,axis=1).max(1) | |
#edge device predictions | |
outputs, offload_to_cloud = device_models['edge'].predict(offload_to_edge) | |
device_predictions['edge'] = outputs.argmax(1) | |
device_confidence['edge'] = softmax(outputs,axis=1).max(1) | |
#cloud device predictions | |
outputs = device_models['cloud'].predict(offload_to_cloud) | |
device_predictions['cloud'] = outputs.argmax(1) | |
device_confidence['cloud'] = softmax(outputs,axis=1).max(1) | |
test_thresholds = [0.,.8,.9,.95,1.] | |
#test the model at various IIoE confidence thresholds | |
for threshold in test_thresholds: | |
get_results(threshold) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment