Skip to content

Instantly share code, notes, and snippets.

View emuccino's full-sized avatar

Eric Muccino emuccino

  • Mindboard
View GitHub Profile
from tensorflow.keras.callbacks import EarlyStopping
early_stop = EarlyStopping(
monitor='val_loss', min_delta=0, patience=5, verbose=0, mode='auto',
baseline=None, restore_best_weights=True)
model.fit(x_train, {device:y_train for device in device_names},
batch_size=64,
epochs=1000,
verbose=1,
import numpy as np
from scipy.special import softmax
def get_results(confidence_threshold):
print('confidence threshold:',confidence_threshold)
predictions = []
confidence = []
exit_level = []
import matplotlib.pyplot as plt
def show_image_compression(samples):
#get encoded samples offloaded to edge
_, offload_end = device_models['end'].predict(samples)
#get encoded samples offloaded to cloud
_, offload_edge = device_models['edge'].predict(offload_end)
#show sample represenations at each device level
for i in range(len(samples)):
print(i)
@emuccino
emuccino / untitled0.ipynb
Created August 26, 2020 03:31
Untitled0.ipynb
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.