Created
October 17, 2018 03:32
-
-
Save enamoria/fa9baa906f23d1636c002e7186516a7b to your computer and use it in GitHub Desktop.
Reduce pandas dataframe memory usage
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# This function is used to reduce memory of a pandas dataframe | |
# The idea is cast the numeric type to another more memory-effective type | |
# For ex: Features "age" should only need type='np.int8' | |
# Source: https://www.kaggle.com/gemartin/load-data-reduce-memory-usage | |
def reduce_mem_usage(df): | |
""" iterate through all the columns of a dataframe and modify the data type | |
to reduce memory usage. | |
""" | |
start_mem = df.memory_usage().sum() / 1024**2 | |
print('Memory usage of dataframe is {:.2f} MB'.format(start_mem)) | |
for col in df.columns: | |
col_type = df[col].dtype | |
if col_type != object and col_type.name != 'category' and 'datetime' not in col_type.name: | |
c_min = df[col].min() | |
c_max = df[col].max() | |
if str(col_type)[:3] == 'int': | |
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: | |
df[col] = df[col].astype(np.int8) | |
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: | |
df[col] = df[col].astype(np.int16) | |
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: | |
df[col] = df[col].astype(np.int32) | |
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: | |
df[col] = df[col].astype(np.int64) | |
else: | |
if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: | |
df[col] = df[col].astype(np.float16) | |
elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: | |
df[col] = df[col].astype(np.float32) | |
else: | |
df[col] = df[col].astype(np.float64) | |
elif 'datetime' not in col_type.name: | |
df[col] = df[col].astype('category') | |
end_mem = df.memory_usage().sum() / 1024**2 | |
print('Memory usage after optimization is: {:.2f} MB'.format(end_mem)) | |
print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem)) | |
return df |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment