Skip to content

Instantly share code, notes, and snippets.

@endolith
Forked from tartakynov/fourex.py
Last active December 2, 2022 00:48
Show Gist options
  • Save endolith/bf60a63453c927b04db29cecebcc4efa to your computer and use it in GitHub Desktop.
Save endolith/bf60a63453c927b04db29cecebcc4efa to your computer and use it in GitHub Desktop.
Fourier Extrapolation in Python
import numpy as np
import pylab as pl
from numpy import fft
def fourierExtrapolation(x, n_predict):
n = x.size
n_harm = 10 # number of harmonics in model
t = np.arange(0, n)
p = np.polyfit(t, x, 1) # find linear trend in x
x_notrend = x - p[0] * t # detrended x
x_freqdom = fft.fft(x_notrend) # detrended x in frequency domain
f = fft.fftfreq(n) # frequencies
indexes = list(range(n))
# sort indexes by frequency, lower -> higher
indexes.sort(key=lambda i: np.absolute(f[i]))
t = np.arange(0, n + n_predict)
restored_sig = np.zeros(t.size)
for i in indexes[:1 + n_harm * 2]:
ampli = np.absolute(x_freqdom[i]) / n # amplitude
phase = np.angle(x_freqdom[i]) # phase
restored_sig += ampli * np.cos(2 * np.pi * f[i] * t + phase)
return restored_sig + p[0] * t
if __name__ == "__main__":
x = np.array([669, 592, 664, 1005, 699, 401, 646, 472, 598, 681, 1126,
1260, 562, 491, 714, 530, 521, 687, 776, 802, 499, 536, 871,
801, 965, 768, 381, 497, 458, 699, 549, 427, 358, 219, 635,
756, 775, 969, 598, 630, 649, 722, 835, 812, 724, 966, 778,
584, 697, 737, 777, 1059, 1218, 848, 713, 884, 879, 1056,
1273, 1848, 780, 1206, 1404, 1444, 1412, 1493, 1576, 1178,
836, 1087, 1101, 1082, 775, 698, 620, 651, 731, 906, 958,
1039, 1105, 620, 576, 707, 888, 1052, 1072, 1357, 768, 986,
816, 889, 973, 983, 1351, 1266, 1053, 1879, 2085, 2419, 1880,
2045, 2212, 1491, 1378, 1524, 1231, 1577, 2459, 1848, 1506,
1589, 1386, 1111, 1180, 1075, 1595, 1309, 2092, 1846, 2321,
2036, 3587, 1637, 1416, 1432, 1110, 1135, 1233, 1439, 894,
628, 967, 1176, 1069, 1193, 1771, 1199, 888, 1155, 1254,
1403, 1502, 1692, 1187, 1110, 1382, 1808, 2039, 1810, 1819,
1408, 803, 1568, 1227, 1270, 1268, 1535, 873, 1006, 1328,
1733, 1352, 1906, 2029, 1734, 1314, 1810, 1540, 1958, 1420,
1530, 1126, 721, 771, 874, 997, 1186, 1415, 973, 1146, 1147,
1079, 3854, 3407, 2257, 1200, 734, 1051, 1030, 1370, 2422,
1531, 1062, 530, 1030, 1061, 1249, 2080, 2251, 1190, 756,
1161, 1053, 1063, 932, 1604, 1130, 744, 930, 948, 1107, 1161,
1194, 1366, 1155, 785, 602, 903, 1142, 1410, 1256, 742, 985,
1037, 1067, 1196, 1412, 1127, 779, 911, 989, 946, 888, 1349,
1124, 761, 994, 1068, 971, 1157, 1558, 1223, 782, 2790, 1835,
1444, 1098, 1399, 1255, 950, 1110, 1345, 1224, 1092, 1446,
1210, 1122, 1259, 1181, 1035, 1325, 1481, 1278, 769, 911,
876, 877, 950, 1383, 980, 705, 888, 877, 638, 1065, 1142,
1090, 1316, 1270, 1048, 1256, 1009, 1175, 1176, 870, 856,
860])
n_predict = 100
extrapolation = fourierExtrapolation(x, n_predict)
pl.plot(np.arange(0, x.size), x, 'C0', label='x', linewidth=3)
pl.plot(np.arange(0, extrapolation.size), extrapolation, 'C1',
label='extrapolation')
pl.legend()
pl.show()
@endolith
Copy link
Author

(Python 3 and PEP8 changes)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment