-
-
Save endolith/bf60a63453c927b04db29cecebcc4efa to your computer and use it in GitHub Desktop.
Fourier Extrapolation in Python
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pylab as pl | |
from numpy import fft | |
def fourierExtrapolation(x, n_predict): | |
n = x.size | |
n_harm = 10 # number of harmonics in model | |
t = np.arange(0, n) | |
p = np.polyfit(t, x, 1) # find linear trend in x | |
x_notrend = x - p[0] * t # detrended x | |
x_freqdom = fft.fft(x_notrend) # detrended x in frequency domain | |
f = fft.fftfreq(n) # frequencies | |
indexes = list(range(n)) | |
# sort indexes by frequency, lower -> higher | |
indexes.sort(key=lambda i: np.absolute(f[i])) | |
t = np.arange(0, n + n_predict) | |
restored_sig = np.zeros(t.size) | |
for i in indexes[:1 + n_harm * 2]: | |
ampli = np.absolute(x_freqdom[i]) / n # amplitude | |
phase = np.angle(x_freqdom[i]) # phase | |
restored_sig += ampli * np.cos(2 * np.pi * f[i] * t + phase) | |
return restored_sig + p[0] * t | |
if __name__ == "__main__": | |
x = np.array([669, 592, 664, 1005, 699, 401, 646, 472, 598, 681, 1126, | |
1260, 562, 491, 714, 530, 521, 687, 776, 802, 499, 536, 871, | |
801, 965, 768, 381, 497, 458, 699, 549, 427, 358, 219, 635, | |
756, 775, 969, 598, 630, 649, 722, 835, 812, 724, 966, 778, | |
584, 697, 737, 777, 1059, 1218, 848, 713, 884, 879, 1056, | |
1273, 1848, 780, 1206, 1404, 1444, 1412, 1493, 1576, 1178, | |
836, 1087, 1101, 1082, 775, 698, 620, 651, 731, 906, 958, | |
1039, 1105, 620, 576, 707, 888, 1052, 1072, 1357, 768, 986, | |
816, 889, 973, 983, 1351, 1266, 1053, 1879, 2085, 2419, 1880, | |
2045, 2212, 1491, 1378, 1524, 1231, 1577, 2459, 1848, 1506, | |
1589, 1386, 1111, 1180, 1075, 1595, 1309, 2092, 1846, 2321, | |
2036, 3587, 1637, 1416, 1432, 1110, 1135, 1233, 1439, 894, | |
628, 967, 1176, 1069, 1193, 1771, 1199, 888, 1155, 1254, | |
1403, 1502, 1692, 1187, 1110, 1382, 1808, 2039, 1810, 1819, | |
1408, 803, 1568, 1227, 1270, 1268, 1535, 873, 1006, 1328, | |
1733, 1352, 1906, 2029, 1734, 1314, 1810, 1540, 1958, 1420, | |
1530, 1126, 721, 771, 874, 997, 1186, 1415, 973, 1146, 1147, | |
1079, 3854, 3407, 2257, 1200, 734, 1051, 1030, 1370, 2422, | |
1531, 1062, 530, 1030, 1061, 1249, 2080, 2251, 1190, 756, | |
1161, 1053, 1063, 932, 1604, 1130, 744, 930, 948, 1107, 1161, | |
1194, 1366, 1155, 785, 602, 903, 1142, 1410, 1256, 742, 985, | |
1037, 1067, 1196, 1412, 1127, 779, 911, 989, 946, 888, 1349, | |
1124, 761, 994, 1068, 971, 1157, 1558, 1223, 782, 2790, 1835, | |
1444, 1098, 1399, 1255, 950, 1110, 1345, 1224, 1092, 1446, | |
1210, 1122, 1259, 1181, 1035, 1325, 1481, 1278, 769, 911, | |
876, 877, 950, 1383, 980, 705, 888, 877, 638, 1065, 1142, | |
1090, 1316, 1270, 1048, 1256, 1009, 1175, 1176, 870, 856, | |
860]) | |
n_predict = 100 | |
extrapolation = fourierExtrapolation(x, n_predict) | |
pl.plot(np.arange(0, x.size), x, 'C0', label='x', linewidth=3) | |
pl.plot(np.arange(0, extrapolation.size), extrapolation, 'C1', | |
label='extrapolation') | |
pl.legend() | |
pl.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
(Python 3 and PEP8 changes)