Skip to content

Instantly share code, notes, and snippets.

@enijkamp
Created May 14, 2018 21:00
Show Gist options
  • Save enijkamp/b803a91f01d7408fc8203fa7727614b2 to your computer and use it in GitHub Desktop.
Save enijkamp/b803a91f01d7408fc8203fa7727614b2 to your computer and use it in GitHub Desktop.
/media/vclagpu/Data1/enijkamp/repeller-sgd/venv/bin/python /media/vclagpu/Data1/enijkamp/repeller-sgd/experiments/bezier/eval_bezier_eigen_5.py
2018-05-14 13:57:18.728290: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA
2018-05-14 13:57:19.053588: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1030] Found device 0 with properties:
name: TITAN Xp major: 6 minor: 1 memoryClockRate(GHz): 1.582
pciBusID: 0000:09:00.0
totalMemory: 11.90GiB freeMemory: 11.74GiB
2018-05-14 13:57:19.053614: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1120] Creating TensorFlow device (/device:GPU:0) -> (device: 1, name: TITAN Xp, pci bus id: 0000:09:00.0, compute capability: 6.1)
2018-05-14 13:57:19,165 - loading ../../resnet_cifar100/model_1/model.ckpt-97675
2018-05-14 13:57:22,610 - Restoring parameters from ../../resnet_cifar100/model_1/model.ckpt-97675
2018-05-14 13:57:23,706 - conv2d_w
2018-05-14 13:57:23,706 - conv2d_w_1
2018-05-14 13:57:23,706 - batch_normalization_offset
2018-05-14 13:57:23,706 - batch_normalization_scales
2018-05-14 13:57:23,706 - conv2d_w_2
2018-05-14 13:57:23,706 - batch_normalization_offset_1
2018-05-14 13:57:23,706 - batch_normalization_scales_1
2018-05-14 13:57:23,706 - conv2d_w_3
2018-05-14 13:57:23,706 - batch_normalization_offset_2
2018-05-14 13:57:23,706 - batch_normalization_scales_2
2018-05-14 13:57:23,707 - conv2d_w_4
2018-05-14 13:57:23,707 - batch_normalization_offset_3
2018-05-14 13:57:23,707 - batch_normalization_scales_3
2018-05-14 13:57:23,707 - conv2d_w_5
2018-05-14 13:57:23,707 - batch_normalization_offset_4
2018-05-14 13:57:23,707 - batch_normalization_scales_4
2018-05-14 13:57:23,707 - conv2d_w_6
2018-05-14 13:57:23,707 - batch_normalization_offset_5
2018-05-14 13:57:23,707 - batch_normalization_scales_5
2018-05-14 13:57:23,707 - conv2d_w_7
2018-05-14 13:57:23,707 - batch_normalization_offset_6
2018-05-14 13:57:23,707 - batch_normalization_scales_6
2018-05-14 13:57:23,707 - conv2d_w_8
2018-05-14 13:57:23,707 - batch_normalization_offset_7
2018-05-14 13:57:23,707 - batch_normalization_scales_7
2018-05-14 13:57:23,707 - conv2d_w_9
2018-05-14 13:57:23,707 - batch_normalization_offset_8
2018-05-14 13:57:23,708 - batch_normalization_scales_8
2018-05-14 13:57:23,708 - conv2d_w_10
2018-05-14 13:57:23,708 - batch_normalization_offset_9
2018-05-14 13:57:23,708 - batch_normalization_scales_9
2018-05-14 13:57:23,708 - conv2d_w_11
2018-05-14 13:57:23,708 - batch_normalization_offset_10
2018-05-14 13:57:23,708 - batch_normalization_scales_10
2018-05-14 13:57:23,708 - conv2d_w_12
2018-05-14 13:57:23,708 - batch_normalization_offset_11
2018-05-14 13:57:23,708 - batch_normalization_scales_11
2018-05-14 13:57:23,708 - conv2d_w_13
2018-05-14 13:57:23,708 - batch_normalization_offset_12
2018-05-14 13:57:23,708 - batch_normalization_scales_12
2018-05-14 13:57:23,708 - conv2d_w_14
2018-05-14 13:57:23,708 - batch_normalization_offset_13
2018-05-14 13:57:23,708 - batch_normalization_scales_13
2018-05-14 13:57:23,708 - conv2d_w_15
2018-05-14 13:57:23,709 - batch_normalization_offset_14
2018-05-14 13:57:23,709 - batch_normalization_scales_14
2018-05-14 13:57:23,709 - conv2d_w_16
2018-05-14 13:57:23,709 - batch_normalization_offset_15
2018-05-14 13:57:23,709 - batch_normalization_scales_15
2018-05-14 13:57:23,709 - conv2d_w_17
2018-05-14 13:57:23,709 - batch_normalization_offset_16
2018-05-14 13:57:23,709 - batch_normalization_scales_16
2018-05-14 13:57:23,709 - conv2d_w_18
2018-05-14 13:57:23,709 - batch_normalization_offset_17
2018-05-14 13:57:23,709 - batch_normalization_scales_17
2018-05-14 13:57:23,709 - conv2d_w_19
2018-05-14 13:57:23,709 - batch_normalization_offset_18
2018-05-14 13:57:23,709 - batch_normalization_scales_18
2018-05-14 13:57:23,709 - conv2d_w_20
2018-05-14 13:57:23,709 - batch_normalization_offset_19
2018-05-14 13:57:23,710 - batch_normalization_scales_19
2018-05-14 13:57:23,710 - conv2d_w_21
2018-05-14 13:57:23,710 - batch_normalization_offset_20
2018-05-14 13:57:23,710 - batch_normalization_scales_20
2018-05-14 13:57:23,710 - conv2d_w_22
2018-05-14 13:57:23,710 - batch_normalization_offset_21
2018-05-14 13:57:23,710 - batch_normalization_scales_21
2018-05-14 13:57:23,710 - conv2d_w_23
2018-05-14 13:57:23,710 - batch_normalization_offset_22
2018-05-14 13:57:23,710 - batch_normalization_scales_22
2018-05-14 13:57:23,710 - conv2d_w_24
2018-05-14 13:57:23,710 - batch_normalization_offset_23
2018-05-14 13:57:23,710 - batch_normalization_scales_23
2018-05-14 13:57:23,710 - conv2d_w_25
2018-05-14 13:57:23,710 - batch_normalization_offset_24
2018-05-14 13:57:23,710 - batch_normalization_scales_24
2018-05-14 13:57:23,710 - conv2d_w_26
2018-05-14 13:57:23,711 - batch_normalization_offset_25
2018-05-14 13:57:23,711 - batch_normalization_scales_25
2018-05-14 13:57:23,711 - conv2d_w_27
2018-05-14 13:57:23,711 - batch_normalization_offset_26
2018-05-14 13:57:23,711 - batch_normalization_scales_26
2018-05-14 13:57:23,711 - conv2d_w_28
2018-05-14 13:57:23,711 - batch_normalization_offset_27
2018-05-14 13:57:23,711 - batch_normalization_scales_27
2018-05-14 13:57:23,711 - conv2d_w_29
2018-05-14 13:57:23,711 - batch_normalization_offset_28
2018-05-14 13:57:23,711 - batch_normalization_scales_28
2018-05-14 13:57:23,711 - conv2d_w_30
2018-05-14 13:57:23,711 - batch_normalization_offset_29
2018-05-14 13:57:23,711 - batch_normalization_scales_29
2018-05-14 13:57:23,711 - conv2d_w_31
2018-05-14 13:57:23,711 - batch_normalization_offset_30
2018-05-14 13:57:23,711 - batch_normalization_scales_30
2018-05-14 13:57:23,712 - conv2d_w_32
2018-05-14 13:57:23,712 - batch_normalization_offset_31
2018-05-14 13:57:23,712 - batch_normalization_scales_31
2018-05-14 13:57:23,712 - conv2d_w_33
2018-05-14 13:57:23,712 - batch_normalization_offset_32
2018-05-14 13:57:23,712 - batch_normalization_scales_32
2018-05-14 13:57:23,712 - batch_normalization_offset_33
2018-05-14 13:57:23,712 - batch_normalization_scales_33
2018-05-14 13:57:23,712 - final_dense/fcl_weights
2018-05-14 13:57:23,712 - fcl_biases
2018-05-14 13:57:23.712786: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1120] Creating TensorFlow device (/device:GPU:0) -> (device: 1, name: TITAN Xp, pci bus id: 0000:09:00.0, compute capability: 6.1)
2018-05-14 13:57:23,791 - loading ../../resnet_cifar100/model_2/model.ckpt-156280
2018-05-14 13:57:27,225 - Restoring parameters from ../../resnet_cifar100/model_2/model.ckpt-156280
2018-05-14 13:57:27,693 - conv2d_w
2018-05-14 13:57:27,694 - conv2d_w_1
2018-05-14 13:57:27,694 - batch_normalization_offset
2018-05-14 13:57:27,694 - batch_normalization_scales
2018-05-14 13:57:27,694 - conv2d_w_2
2018-05-14 13:57:27,694 - batch_normalization_offset_1
2018-05-14 13:57:27,695 - batch_normalization_scales_1
2018-05-14 13:57:27,695 - conv2d_w_3
2018-05-14 13:57:27,695 - batch_normalization_offset_2
2018-05-14 13:57:27,695 - batch_normalization_scales_2
2018-05-14 13:57:27,695 - conv2d_w_4
2018-05-14 13:57:27,695 - batch_normalization_offset_3
2018-05-14 13:57:27,695 - batch_normalization_scales_3
2018-05-14 13:57:27,695 - conv2d_w_5
2018-05-14 13:57:27,696 - batch_normalization_offset_4
2018-05-14 13:57:27,696 - batch_normalization_scales_4
2018-05-14 13:57:27,696 - conv2d_w_6
2018-05-14 13:57:27,696 - batch_normalization_offset_5
2018-05-14 13:57:27,696 - batch_normalization_scales_5
2018-05-14 13:57:27,696 - conv2d_w_7
2018-05-14 13:57:27,696 - batch_normalization_offset_6
2018-05-14 13:57:27,696 - batch_normalization_scales_6
2018-05-14 13:57:27,697 - conv2d_w_8
2018-05-14 13:57:27,697 - batch_normalization_offset_7
2018-05-14 13:57:27,697 - batch_normalization_scales_7
2018-05-14 13:57:27,697 - conv2d_w_9
2018-05-14 13:57:27,697 - batch_normalization_offset_8
2018-05-14 13:57:27,697 - batch_normalization_scales_8
2018-05-14 13:57:27,697 - conv2d_w_10
2018-05-14 13:57:27,697 - batch_normalization_offset_9
2018-05-14 13:57:27,698 - batch_normalization_scales_9
2018-05-14 13:57:27,698 - conv2d_w_11
2018-05-14 13:57:27,698 - batch_normalization_offset_10
2018-05-14 13:57:27,698 - batch_normalization_scales_10
2018-05-14 13:57:27,698 - conv2d_w_12
2018-05-14 13:57:27,698 - batch_normalization_offset_11
2018-05-14 13:57:27,698 - batch_normalization_scales_11
2018-05-14 13:57:27,698 - conv2d_w_13
2018-05-14 13:57:27,699 - batch_normalization_offset_12
2018-05-14 13:57:27,699 - batch_normalization_scales_12
2018-05-14 13:57:27,699 - conv2d_w_14
2018-05-14 13:57:27,699 - batch_normalization_offset_13
2018-05-14 13:57:27,699 - batch_normalization_scales_13
2018-05-14 13:57:27,699 - conv2d_w_15
2018-05-14 13:57:27,699 - batch_normalization_offset_14
2018-05-14 13:57:27,699 - batch_normalization_scales_14
2018-05-14 13:57:27,700 - conv2d_w_16
2018-05-14 13:57:27,700 - batch_normalization_offset_15
2018-05-14 13:57:27,700 - batch_normalization_scales_15
2018-05-14 13:57:27,700 - conv2d_w_17
2018-05-14 13:57:27,700 - batch_normalization_offset_16
2018-05-14 13:57:27,700 - batch_normalization_scales_16
2018-05-14 13:57:27,700 - conv2d_w_18
2018-05-14 13:57:27,701 - batch_normalization_offset_17
2018-05-14 13:57:27,701 - batch_normalization_scales_17
2018-05-14 13:57:27,701 - conv2d_w_19
2018-05-14 13:57:27,701 - batch_normalization_offset_18
2018-05-14 13:57:27,701 - batch_normalization_scales_18
2018-05-14 13:57:27,701 - conv2d_w_20
2018-05-14 13:57:27,701 - batch_normalization_offset_19
2018-05-14 13:57:27,701 - batch_normalization_scales_19
2018-05-14 13:57:27,702 - conv2d_w_21
2018-05-14 13:57:27,702 - batch_normalization_offset_20
2018-05-14 13:57:27,702 - batch_normalization_scales_20
2018-05-14 13:57:27,702 - conv2d_w_22
2018-05-14 13:57:27,702 - batch_normalization_offset_21
2018-05-14 13:57:27,702 - batch_normalization_scales_21
2018-05-14 13:57:27,702 - conv2d_w_23
2018-05-14 13:57:27,702 - batch_normalization_offset_22
2018-05-14 13:57:27,703 - batch_normalization_scales_22
2018-05-14 13:57:27,703 - conv2d_w_24
2018-05-14 13:57:27,703 - batch_normalization_offset_23
2018-05-14 13:57:27,703 - batch_normalization_scales_23
2018-05-14 13:57:27,703 - conv2d_w_25
2018-05-14 13:57:27,703 - batch_normalization_offset_24
2018-05-14 13:57:27,703 - batch_normalization_scales_24
2018-05-14 13:57:27,703 - conv2d_w_26
2018-05-14 13:57:27,704 - batch_normalization_offset_25
2018-05-14 13:57:27,704 - batch_normalization_scales_25
2018-05-14 13:57:27,704 - conv2d_w_27
2018-05-14 13:57:27,704 - batch_normalization_offset_26
2018-05-14 13:57:27,704 - batch_normalization_scales_26
2018-05-14 13:57:27,704 - conv2d_w_28
2018-05-14 13:57:27,704 - batch_normalization_offset_27
2018-05-14 13:57:27,704 - batch_normalization_scales_27
2018-05-14 13:57:27,705 - conv2d_w_29
2018-05-14 13:57:27,705 - batch_normalization_offset_28
2018-05-14 13:57:27,705 - batch_normalization_scales_28
2018-05-14 13:57:27,705 - conv2d_w_30
2018-05-14 13:57:27,705 - batch_normalization_offset_29
2018-05-14 13:57:27,705 - batch_normalization_scales_29
2018-05-14 13:57:27,705 - conv2d_w_31
2018-05-14 13:57:27,705 - batch_normalization_offset_30
2018-05-14 13:57:27,706 - batch_normalization_scales_30
2018-05-14 13:57:27,706 - conv2d_w_32
2018-05-14 13:57:27,706 - batch_normalization_offset_31
2018-05-14 13:57:27,706 - batch_normalization_scales_31
2018-05-14 13:57:27,706 - conv2d_w_33
2018-05-14 13:57:27,706 - batch_normalization_offset_32
2018-05-14 13:57:27,706 - batch_normalization_scales_32
2018-05-14 13:57:27,707 - batch_normalization_offset_33
2018-05-14 13:57:27,707 - batch_normalization_scales_33
2018-05-14 13:57:27,707 - final_dense/fcl_weights
2018-05-14 13:57:27,707 - fcl_biases
2018-05-14 13:57:27.707864: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1120] Creating TensorFlow device (/device:GPU:0) -> (device: 1, name: TITAN Xp, pci bus id: 0000:09:00.0, compute capability: 6.1)
2018-05-14 13:57:27,773 - loading ../../output/cifar100_resnet32_bezier/cifar10_interpolate_1/2018-05-10-23-27-58/model/w_vars-50000
2018-05-14 13:58:15,063 - Restoring parameters from ../../output/cifar100_resnet32_bezier/cifar10_interpolate_1/2018-05-10-23-27-58/model/w_vars-50000
2018-05-14 13:58:21,790 - Variable
2018-05-14 13:58:21,790 - Variable_1
2018-05-14 13:58:21,790 - Variable_2
2018-05-14 13:58:21,791 - Variable_3
2018-05-14 13:58:21,791 - Variable_4
2018-05-14 13:58:21,791 - Variable_5
2018-05-14 13:58:21,791 - Variable_6
2018-05-14 13:58:21,791 - Variable_7
2018-05-14 13:58:21,791 - Variable_8
2018-05-14 13:58:21,791 - Variable_9
2018-05-14 13:58:21,791 - Variable_10
2018-05-14 13:58:21,791 - Variable_11
2018-05-14 13:58:21,791 - Variable_12
2018-05-14 13:58:21,792 - Variable_13
2018-05-14 13:58:21,792 - Variable_14
2018-05-14 13:58:21,792 - Variable_15
2018-05-14 13:58:21,792 - Variable_16
2018-05-14 13:58:21,792 - Variable_17
2018-05-14 13:58:21,792 - Variable_18
2018-05-14 13:58:21,792 - Variable_19
2018-05-14 13:58:21,792 - Variable_20
2018-05-14 13:58:21,792 - Variable_21
2018-05-14 13:58:21,792 - Variable_22
2018-05-14 13:58:21,792 - Variable_23
2018-05-14 13:58:21,792 - Variable_24
2018-05-14 13:58:21,793 - Variable_25
2018-05-14 13:58:21,793 - Variable_26
2018-05-14 13:58:21,793 - Variable_27
2018-05-14 13:58:21,793 - Variable_28
2018-05-14 13:58:21,793 - Variable_29
2018-05-14 13:58:21,793 - Variable_30
2018-05-14 13:58:21,793 - Variable_31
2018-05-14 13:58:21,793 - Variable_32
2018-05-14 13:58:21,793 - Variable_33
2018-05-14 13:58:21,793 - Variable_34
2018-05-14 13:58:21,793 - Variable_35
2018-05-14 13:58:21,794 - Variable_36
2018-05-14 13:58:21,794 - Variable_37
2018-05-14 13:58:21,794 - Variable_38
2018-05-14 13:58:21,794 - Variable_39
2018-05-14 13:58:21,794 - Variable_40
2018-05-14 13:58:21,794 - Variable_41
2018-05-14 13:58:21,794 - Variable_42
2018-05-14 13:58:21,794 - Variable_43
2018-05-14 13:58:21,794 - Variable_44
2018-05-14 13:58:21,794 - Variable_45
2018-05-14 13:58:21,794 - Variable_46
2018-05-14 13:58:21,795 - Variable_47
2018-05-14 13:58:21,795 - Variable_48
2018-05-14 13:58:21,795 - Variable_49
2018-05-14 13:58:21,795 - Variable_50
2018-05-14 13:58:21,795 - Variable_51
2018-05-14 13:58:21,795 - Variable_52
2018-05-14 13:58:21,795 - Variable_53
2018-05-14 13:58:21,795 - Variable_54
2018-05-14 13:58:21,795 - Variable_55
2018-05-14 13:58:21,795 - Variable_56
2018-05-14 13:58:21,795 - Variable_57
2018-05-14 13:58:21,795 - Variable_58
2018-05-14 13:58:21,796 - Variable_59
2018-05-14 13:58:21,796 - Variable_60
2018-05-14 13:58:21,796 - Variable_61
2018-05-14 13:58:21,796 - Variable_62
2018-05-14 13:58:21,796 - Variable_63
2018-05-14 13:58:21,796 - Variable_64
2018-05-14 13:58:21,796 - Variable_65
2018-05-14 13:58:21,796 - Variable_66
2018-05-14 13:58:21,796 - Variable_67
2018-05-14 13:58:21,796 - Variable_68
2018-05-14 13:58:21,797 - Variable_69
2018-05-14 13:58:21,797 - Variable_70
2018-05-14 13:58:21,797 - Variable_71
2018-05-14 13:58:21,797 - Variable_72
2018-05-14 13:58:21,797 - Variable_73
2018-05-14 13:58:21,797 - Variable_74
2018-05-14 13:58:21,797 - Variable_75
2018-05-14 13:58:21,797 - Variable_76
2018-05-14 13:58:21,797 - Variable_77
2018-05-14 13:58:21,797 - Variable_78
2018-05-14 13:58:21,798 - Variable_79
2018-05-14 13:58:21,798 - Variable_80
2018-05-14 13:58:21,798 - Variable_81
2018-05-14 13:58:21,798 - Variable_82
2018-05-14 13:58:21,798 - Variable_83
2018-05-14 13:58:21,798 - Variable_84
2018-05-14 13:58:21,798 - Variable_85
2018-05-14 13:58:21,798 - Variable_86
2018-05-14 13:58:21,798 - Variable_87
2018-05-14 13:58:21,798 - Variable_88
2018-05-14 13:58:21,798 - Variable_89
2018-05-14 13:58:21,798 - Variable_90
2018-05-14 13:58:21,798 - Variable_91
2018-05-14 13:58:21,799 - Variable_92
2018-05-14 13:58:21,799 - Variable_93
2018-05-14 13:58:21,799 - Variable_94
2018-05-14 13:58:21,799 - Variable_95
2018-05-14 13:58:21,799 - Variable_96
2018-05-14 13:58:21,799 - Variable_97
2018-05-14 13:58:21,799 - Variable_98
2018-05-14 13:58:21,799 - Variable_99
2018-05-14 13:58:21,799 - Variable_100
2018-05-14 13:58:21,799 - Variable_101
2018-05-14 13:58:21,799 - Variable_102
2018-05-14 13:58:21,799 - Variable_103
2018-05-14 13:58:21,799 - Variable_104
2018-05-14 13:58:21,800 - Variable_105
2018-05-14 13:58:21,800 - Variable_106
2018-05-14 13:58:21,800 - Variable_107
2018-05-14 13:58:21,800 - Variable_108
2018-05-14 13:58:21,800 - Variable_109
2018-05-14 13:58:21,800 - Variable_110
2018-05-14 13:58:21,800 - Variable_111
2018-05-14 13:58:21,800 - Variable_112
2018-05-14 13:58:21,800 - Variable_113
2018-05-14 13:58:21,800 - Variable_114
2018-05-14 13:58:21,800 - Variable_115
2018-05-14 13:58:21,800 - Variable_116
2018-05-14 13:58:21,800 - Variable_117
2018-05-14 13:58:21,801 - Variable_118
2018-05-14 13:58:21,801 - Variable_119
2018-05-14 13:58:21,801 - Variable_120
2018-05-14 13:58:21,801 - Variable_121
2018-05-14 13:58:21,801 - Variable_122
2018-05-14 13:58:21,801 - Variable_123
2018-05-14 13:58:21,801 - Variable_124
2018-05-14 13:58:21,801 - Variable_125
2018-05-14 13:58:21,801 - Variable_126
2018-05-14 13:58:21,801 - Variable_127
2018-05-14 13:58:21,801 - Variable_128
2018-05-14 13:58:21,801 - Variable_129
2018-05-14 13:58:21,801 - Variable_130
2018-05-14 13:58:21,802 - Variable_131
2018-05-14 13:58:21,802 - Variable_132
2018-05-14 13:58:21,802 - Variable_133
2018-05-14 13:58:21,802 - Variable_134
2018-05-14 13:58:21,802 - Variable_135
2018-05-14 13:58:21,802 - Variable_136
2018-05-14 13:58:21,802 - Variable_137
2018-05-14 13:58:21,802 - Variable_138
2018-05-14 13:58:21,802 - Variable_139
2018-05-14 13:58:21,802 - Variable_140
2018-05-14 13:58:21,802 - Variable_141
2018-05-14 13:58:21,802 - Variable_142
2018-05-14 13:58:21,802 - Variable_143
2018-05-14 13:58:21,803 - Variable_144
2018-05-14 13:58:21,803 - Variable_145
2018-05-14 13:58:21,803 - Variable_146
2018-05-14 13:58:21,803 - Variable_147
2018-05-14 13:58:21,803 - Variable_148
2018-05-14 13:58:21,803 - Variable_149
2018-05-14 13:58:21,803 - Variable_150
2018-05-14 13:58:21,803 - Variable_151
2018-05-14 13:58:21,803 - Variable_152
2018-05-14 13:58:21,803 - Variable_153
2018-05-14 13:58:21,803 - Variable_154
2018-05-14 13:58:21,803 - Variable_155
2018-05-14 13:58:21,804 - Variable_156
2018-05-14 13:58:21,804 - Variable_157
2018-05-14 13:58:21,804 - Variable_158
2018-05-14 13:58:21,804 - Variable_159
2018-05-14 13:58:21,804 - Variable_160
2018-05-14 13:58:21,804 - Variable_161
2018-05-14 13:58:21,804 - Variable_162
2018-05-14 13:58:21,804 - Variable_163
2018-05-14 13:58:21,804 - Variable_164
2018-05-14 13:58:21,804 - Variable_165
2018-05-14 13:58:21,804 - Variable_166
2018-05-14 13:58:21,804 - Variable_167
2018-05-14 13:58:21,804 - Variable_168
2018-05-14 13:58:21,805 - Variable_169
2018-05-14 13:58:21,805 - Variable_170
2018-05-14 13:58:21,805 - Variable_171
2018-05-14 13:58:21,805 - Variable_172
2018-05-14 13:58:21,805 - Variable_173
2018-05-14 13:58:21,805 - Variable_174
2018-05-14 13:58:21,805 - Variable_175
2018-05-14 13:58:21,805 - Variable_176
2018-05-14 13:58:21,805 - Variable_177
2018-05-14 13:58:21,805 - Variable_178
2018-05-14 13:58:21,805 - Variable_179
2018-05-14 13:58:21,805 - Variable_180
2018-05-14 13:58:21,805 - Variable_181
2018-05-14 13:58:21,806 - Variable_182
2018-05-14 13:58:21,806 - Variable_183
2018-05-14 13:58:21,806 - Variable_184
2018-05-14 13:58:21,806 - Variable_185
2018-05-14 13:58:21,806 - Variable_186
2018-05-14 13:58:21,806 - Variable_187
2018-05-14 13:58:21,806 - Variable_188
2018-05-14 13:58:21,806 - Variable_189
2018-05-14 13:58:21,806 - Variable_190
2018-05-14 13:58:21,806 - Variable_191
2018-05-14 13:58:21,806 - Variable_192
2018-05-14 13:58:21,806 - Variable_193
2018-05-14 13:58:21,806 - Variable_194
2018-05-14 13:58:21,807 - Variable_195
2018-05-14 13:58:21,807 - Variable_196
2018-05-14 13:58:21,807 - Variable_197
2018-05-14 13:58:21,807 - Variable_198
2018-05-14 13:58:21,807 - Variable_199
2018-05-14 13:58:21,807 - Variable_200
2018-05-14 13:58:21,807 - Variable_201
2018-05-14 13:58:21,807 - Variable_202
2018-05-14 13:58:21,807 - Variable_203
2018-05-14 13:58:21,807 - Variable_204
2018-05-14 13:58:21,807 - Variable_205
2018-05-14 13:58:21,807 - Variable_206
2018-05-14 13:58:21,807 - Variable_207
2018-05-14 13:58:21.922338: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1120] Creating TensorFlow device (/device:GPU:0) -> (device: 1, name: TITAN Xp, pci bus id: 0000:09:00.0, compute capability: 6.1)
2018-05-14 13:58:28,265 - bezier 0/10
2018-05-14 14:01:26,373 - t= +0.0000 d= +0.0000 c_train= +0.1455 c_test= +1.6767 a_train= +0.9617 a_test= +0.6351 diff(a)= +0.0000 time(eighsh)= +158.39 eigs=[ -4.2026 -9.7633 +9.8288 +10.9886 +12.4591 -14.2868 -15.6267 +16.3191 -18.5448 +23.2943]
2018-05-14 14:04:38,743 - t= +0.0256 d= +171.9892 c_train= +0.1893 c_test= +1.6783 a_train= +0.9386 a_test= +0.6408 diff(a)= +0.0057 time(eighsh)= +177.13 eigs=[ +0.6225 -0.9228 -2.3526 -3.2123 -3.8885 -4.4325 +5.7726 +6.6950 +7.3586 -8.1167]
2018-05-14 14:06:07,153 - t= +0.0513 d= +328.6735 c_train= +0.1877 c_test= +1.7442 a_train= +0.9409 a_test= +0.6366 diff(a)= +0.0015 time(eighsh)= +73.43 eigs=[ +0.0045 -0.0791 +0.7532 +2.5026 -3.5013 -4.6843 -4.9815 +5.0475 +5.1905 -5.6759]
2018-05-14 14:07:57,749 - t= +0.0769 d= +471.7764 c_train= +0.1697 c_test= +1.8185 a_train= +0.9496 a_test= +0.6349 diff(a)= -0.0002 time(eighsh)= +95.33 eigs=[ +0.4901 +0.4941 -1.2878 +1.5725 -1.9486 +1.9882 -2.0005 +2.5849 -2.6049 -2.9506]
2018-05-14 14:11:03,434 - t= +0.1026 d= +602.9160 c_train= +0.1485 c_test= +1.8956 a_train= +0.9504 a_test= +0.6336 diff(a)= -0.0015 time(eighsh)= +170.41 eigs=[ +0.0616 +0.5716 +0.8664 -1.1613 -1.6120 +1.8121 -2.2494 -2.7165 +2.8094 -3.5757]
2018-05-14 14:12:59,350 - t= +0.1282 d= +723.3875 c_train= +0.1409 c_test= +1.9704 a_train= +0.9571 a_test= +0.6347 diff(a)= -0.0004 time(eighsh)= +101.46 eigs=[ +0.5920 +0.8510 +1.3713 +1.5210 +1.9706 -2.5851 -3.1231 +5.5949 -8.1480 +9.8812]
2018-05-14 14:13:35,428 - t= +0.1538 d= +834.1293 c_train= +0.1314 c_test= +2.0401 a_train= +0.9582 a_test= +0.6331 diff(a)= -0.0020 time(eighsh)= +21.26 eigs=[ -0.3922 +4.2002 -4.5710 +4.7419 -8.2668 -9.4844 +10.8961 -12.1959 +12.3475 +13.5646]
2018-05-14 14:15:07,549 - t= +0.1795 d= +935.8316 c_train= +0.1169 c_test= +2.1023 a_train= +0.9607 a_test= +0.6322 diff(a)= -0.0029 time(eighsh)= +78.09 eigs=[ +0.3684 -1.5864 +3.1457 +3.2714 -3.7556 +4.6485 +5.3468 -6.3141 +6.7783 -7.0176]
2018-05-14 14:16:50,380 - t= +0.2051 d=+1029.0129 c_train= +0.1216 c_test= +2.1556 a_train= +0.9619 a_test= +0.6331 diff(a)= -0.0020 time(eighsh)= +87.90 eigs=[ +0.1041 +1.4696 +1.6801 -2.4547 +3.1946 -3.1952 -4.0932 +4.3274 +4.5341 -5.7130]
2018-05-14 14:19:44,238 - t= +0.2308 d=+1114.0770 c_train= +0.1108 c_test= +2.2003 a_train= +0.9639 a_test= +0.6342 diff(a)= -0.0009 time(eighsh)= +158.92 eigs=[ +0.9143 +1.2442 -1.2645 -1.4658 -2.2410 -2.3544 -2.3905 -2.4520 +3.1563 +3.2533]
2018-05-14 14:21:44,742 - t= +0.2564 d=+1191.3577 c_train= +0.1051 c_test= +2.2345 a_train= +0.9656 a_test= +0.6375 diff(a)= +0.0024 time(eighsh)= +105.59 eigs=[ +0.1846 +0.3887 -0.8443 +1.0328 +1.2633 +1.3995 +1.5198 +1.5612 +1.8925 +2.1186]
2018-05-14 14:33:03,911 - t= +0.2821 d=+1261.1420 c_train= +0.1067 c_test= +2.2572 a_train= +0.9651 a_test= +0.6403 diff(a)= +0.0052 time(eighsh)= +664.25 eigs=[ +1.8634 +2.7981 +3.3352 -3.5211 -7.0447 +7.6285 -8.1737 -11.5240 +11.8988 -12.0435]
2018-05-14 14:41:05,886 - t= +0.3077 d=+1323.6818 c_train= +0.1050 c_test= +2.2697 a_train= +0.9650 a_test= +0.6397 diff(a)= +0.0046 time(eighsh)= +467.04 eigs=[ -0.0618 -0.2179 +0.2250 -0.3314 -0.3535 -0.4272 +0.4361 -0.4542 +0.4792 +0.5570]
2018-05-14 14:41:56,404 - t= +0.3333 d=+1379.1989 c_train= +0.1043 c_test= +2.2723 a_train= +0.9648 a_test= +0.6401 diff(a)= +0.0050 time(eighsh)= +35.40 eigs=[ -0.9441 +2.5984 -2.8486 -4.6519 +4.9389 -5.0234 +5.3041 +5.9990 -7.3121 -7.7318]
2018-05-14 14:43:16,597 - t= +0.3590 d=+1427.8862 c_train= +0.1069 c_test= +2.2667 a_train= +0.9649 a_test= +0.6408 diff(a)= +0.0057 time(eighsh)= +65.29 eigs=[ -0.1239 +0.3666 +2.8969 -2.9346 -3.2943 +3.3922 +3.9267 -4.4753 -4.4767 -5.4366]
2018-05-14 14:45:43,120 - t= +0.3846 d=+1469.9036 c_train= +0.1047 c_test= +2.2527 a_train= +0.9630 a_test= +0.6422 diff(a)= +0.0071 time(eighsh)= +131.79 eigs=[ +0.1459 -0.3148 -0.5334 -0.5642 -0.7299 -0.7566 +0.9788 +1.1733 +1.6318 +1.9557]
2018-05-14 14:48:13,255 - t= +0.4103 d=+1505.3817 c_train= +0.1108 c_test= +2.2319 a_train= +0.9611 a_test= +0.6426 diff(a)= +0.0075 time(eighsh)= +135.17 eigs=[ -0.0588 -1.1452 +1.2272 -1.2528 +1.3100 +1.6148 +1.6482 -1.7578 -1.8717 -2.1211]
2018-05-14 14:48:54,853 - t= +0.4359 d=+1534.4177 c_train= +0.1241 c_test= +2.2055 a_train= +0.9587 a_test= +0.6440 diff(a)= +0.0089 time(eighsh)= +26.45 eigs=[ -0.5514 +2.9355 -3.1729 -3.2794 +3.7375 -4.4475 +5.2491 -8.0355 +9.3532 -10.6204]
2018-05-14 14:58:52,387 - eigsh failed: ARPACK error -1: No convergence (501 iterations, 4/10 eigenvectors converged)
2018-05-14 14:58:52,390 - t= +0.4615 d=+1557.0747 c_train= +0.1266 c_test= +2.1732 a_train= +0.9593 a_test= +0.6452 diff(a)= +0.0101 time(eighsh)= +583.28 eigs=[]
2018-05-14 14:59:42,462 - t= +0.4872 d=+1573.3835 c_train= +0.1378 c_test= +2.1353 a_train= +0.9525 a_test= +0.6459 diff(a)= +0.0108 time(eighsh)= +35.90 eigs=[ +0.0155 +4.2015 -6.1773 +14.3577 +14.3666 -17.4867 +22.0594 -26.1384 +26.5089 -35.0766]
2018-05-14 15:01:12,603 - t= +0.5128 d=+1583.3413 c_train= +0.1492 c_test= +2.0907 a_train= +0.9498 a_test= +0.6428 diff(a)= +0.0077 time(eighsh)= +76.00 eigs=[ -0.0073 -0.7599 -1.3427 -1.3909 -1.7814 -2.2947 +2.4027 +3.8510 -4.0795 -4.5972]
2018-05-14 15:02:49,126 - t= +0.5385 d=+1586.9132 c_train= +0.1589 c_test= +2.0409 a_train= +0.9466 a_test= +0.6417 diff(a)= +0.0066 time(eighsh)= +81.46 eigs=[ +0.5890 -0.9956 +2.1300 -2.6019 +4.2670 +4.6640 -6.0783 +6.7148 -7.1847 +7.2619]
2018-05-14 15:04:20,895 - t= +0.5641 d=+1584.0328 c_train= +0.1750 c_test= +1.9880 a_train= +0.9397 a_test= +0.6398 diff(a)= +0.0047 time(eighsh)= +76.84 eigs=[ +0.4985 -1.3651 -1.4112 -3.3740 +4.4564 -4.4704 -4.6006 +5.6052 +9.1222 +9.1264]
2018-05-14 15:05:18,220 - t= +0.5897 d=+1574.6066 c_train= +0.1890 c_test= +1.9310 a_train= +0.9378 a_test= +0.6390 diff(a)= +0.0039 time(eighsh)= +42.17 eigs=[ +7.2632 -8.7409 +9.0275 -9.1079 +18.3591 -24.0693 +27.5567 +29.5675 -29.7285 +31.4464]
2018-05-14 15:06:49,255 - t= +0.6154 d=+1558.5165 c_train= +0.2073 c_test= +1.8730 a_train= +0.9322 a_test= +0.6401 diff(a)= +0.0050 time(eighsh)= +76.08 eigs=[ -5.5675 -5.8583 -12.7845 +13.1665 +22.0231 -29.0913 -33.7517 +34.3040 +34.3090 -34.3688]
2018-05-14 15:10:17,893 - t= +0.6410 d=+1535.6270 c_train= +0.2241 c_test= +1.8150 a_train= +0.9264 a_test= +0.6408 diff(a)= +0.0057 time(eighsh)= +193.79 eigs=[ -0.0954 -0.3276 -0.5517 -1.8291 +2.3166 +2.3896 -2.4188 -2.8277 +3.7754 -4.1873]
2018-05-14 15:14:11,576 - t= +0.6667 d=+1505.7946 c_train= +0.2528 c_test= +1.7606 a_train= +0.9214 a_test= +0.6416 diff(a)= +0.0065 time(eighsh)= +218.85 eigs=[ -1.5030 +2.3641 +2.9509 +3.1819 +3.4525 -3.8107 -4.2019 +8.5790 +10.0614 -11.4224]
2018-05-14 15:15:48,191 - t= +0.6923 d=+1468.8794 c_train= +0.2664 c_test= +1.7181 a_train= +0.9090 a_test= +0.6355 diff(a)= +0.0004 time(eighsh)= +82.10 eigs=[ +6.3943 -11.3306 -17.1354 +19.3020 +26.2145 -26.6132 +27.7505 +30.8027 -30.8847 +35.0749]
2018-05-14 15:18:32,314 - t= +0.7179 d=+1424.7631 c_train= +0.3100 c_test= +1.6876 a_train= +0.8992 a_test= +0.6278 diff(a)= -0.0073 time(eighsh)= +149.53 eigs=[ +1.5148 +2.3991 -2.7822 -7.9087 +9.4020 +11.0024 +11.7851 -16.3632 +25.6884 -26.1350]
2018-05-14 15:19:53,223 - t= +0.7436 d=+1373.3792 c_train= +0.3493 c_test= +1.6569 a_train= +0.8848 a_test= +0.6221 diff(a)= -0.0130 time(eighsh)= +65.89 eigs=[ +3.9610 -6.3393 -12.7566 -16.3444 -16.6465 +27.4046 +43.2032 +52.8131 -57.1989 -63.0033]
2018-05-14 15:23:24,063 - t= +0.7692 d=+1314.7482 c_train= +0.4119 c_test= +1.6288 a_train= +0.8678 a_test= +0.6162 diff(a)= -0.0189 time(eighsh)= +195.87 eigs=[ -0.4667 +1.6766 -3.1348 -5.0770 +5.8740 +7.1455 -7.8991 -15.9659 +17.7841 -18.7986]
2018-05-14 15:26:05,739 - t= +0.7949 d=+1249.0431 c_train= +0.4773 c_test= +1.6056 a_train= +0.8500 a_test= +0.6107 diff(a)= -0.0244 time(eighsh)= +146.95 eigs=[ -0.1650 -3.7505 +6.8602 -9.1391 -12.0373 -16.3917 +19.0409 +20.3822 -24.1422 +25.4913]
2018-05-14 15:27:44,806 - t= +0.8205 d=+1176.6843 c_train= +0.5468 c_test= +1.5885 a_train= +0.8302 a_test= +0.6067 diff(a)= -0.0284 time(eighsh)= +84.05 eigs=[ -18.4969 +19.6063 +26.9161 +27.3206 -37.5479 -48.2732 +67.4927 -69.9190 +73.3163 +84.3216]
2018-05-14 15:29:47,797 - t= +0.8462 d=+1098.5007 c_train= +0.5867 c_test= +1.5735 a_train= +0.8149 a_test= +0.6022 diff(a)= -0.0329 time(eighsh)= +107.82 eigs=[ -4.2495 -4.5645 -5.3692 +7.4410 +23.8583 -35.1755 +38.4239 +50.2847 -62.9637 +68.4711]
2018-05-14 15:42:00,488 - eigsh failed: ARPACK error -1: No convergence (501 iterations, 6/10 eigenvectors converged)
2018-05-14 15:42:00,495 - t= +0.8718 d=+1016.0042 c_train= +0.6020 c_test= +1.5611 a_train= +0.8097 a_test= +0.6025 diff(a)= -0.0326 time(eighsh)= +718.16 eigs=[]
2018-05-14 15:43:18,645 - t= +0.8974 d= +931.8899 c_train= +0.5909 c_test= +1.5508 a_train= +0.8128 a_test= +0.6100 diff(a)= -0.0251 time(eighsh)= +63.19 eigs=[ -3.9305 -5.0876 +7.2694 +8.2056 -15.2801 -19.6669 +21.3134 -25.0711 -31.5681 -32.1011]
2018-05-14 15:48:13,976 - t= +0.9231 d= +850.9781 c_train= +0.5573 c_test= +1.5352 a_train= +0.8190 a_test= +0.6194 diff(a)= -0.0157 time(eighsh)= +280.32 eigs=[ -0.2981 -2.8461 -6.1874 +6.2140 -8.1457 -9.4868 -11.1025 -14.0785 +15.1963 +19.6935]
2018-05-14 15:50:19,262 - t= +0.9487 d= +781.9592 c_train= +0.5134 c_test= +1.5465 a_train= +0.8368 a_test= +0.6234 diff(a)= -0.0117 time(eighsh)= +109.74 eigs=[ -1.5719 -2.8543 +9.2767 -10.1239 +11.8664 +16.2284 -17.6978 +18.2850 -21.6129 +27.4191]
2018-05-14 15:52:08,884 - t= +0.9744 d= +740.0017 c_train= +0.3712 c_test= +1.5874 a_train= +0.8816 a_test= +0.6349 diff(a)= -0.0002 time(eighsh)= +94.33 eigs=[ +2.0987 +2.2772 +5.2705 -6.1354 +6.3822 -10.6531 +15.2224 -18.4763 -32.0870 -32.3550]
2018-05-14 15:55:21,660 - t= +1.0000 d= +747.7407 c_train= +0.1265 c_test= +1.7203 a_train= +0.9659 a_test= +0.6375 diff(a)= +0.0024 time(eighsh)= +177.81 eigs=[ -1.1564 -2.1474 -4.5294 +4.5884 +5.8961 +6.0936 +8.0879 -10.2288 -15.9731 -20.0803]
2018-05-14 15:55:21,661 - bezier 1/10
2018-05-14 16:01:35,153 - t= +0.0000 d= +0.0000 c_train= +0.1408 c_test= +1.6767 a_train= +0.9611 a_test= +0.6351 diff(a)= +0.0000 time(eighsh)= +356.93 eigs=[ -0.2525 -2.3305 +2.7923 +3.2905 -3.7257 +3.8275 +4.2307 +5.2431 +9.0263 +9.2176]
2018-05-14 16:05:03,352 - t= +0.0256 d= +171.9892 c_train= +0.1924 c_test= +1.6783 a_train= +0.9407 a_test= +0.6408 diff(a)= +0.0057 time(eighsh)= +192.97 eigs=[ +0.2983 -0.9286 -1.3422 +2.0022 -2.0327 +2.6200 +2.8491 -3.0320 +4.0145 +5.9905]
2018-05-14 16:07:40,658 - t= +0.0513 d= +328.6735 c_train= +0.1830 c_test= +1.7442 a_train= +0.9401 a_test= +0.6366 diff(a)= +0.0015 time(eighsh)= +142.28 eigs=[ +0.1068 +0.3967 +1.2593 +1.6405 -2.6285 +3.8542 -4.1274 -4.4679 -4.9530 +5.0606]
2018-05-14 16:08:41,749 - t= +0.0769 d= +471.7764 c_train= +0.1711 c_test= +1.8185 a_train= +0.9460 a_test= +0.6349 diff(a)= -0.0002 time(eighsh)= +46.20 eigs=[ +0.1574 +0.9741 -2.3909 +3.0822 -4.1331 -4.3478 -4.8004 +5.0480 +5.0647 -6.4062]
2018-05-14 16:09:32,652 - t= +0.1026 d= +602.9160 c_train= +0.1525 c_test= +1.8956 a_train= +0.9513 a_test= +0.6336 diff(a)= -0.0015 time(eighsh)= +35.96 eigs=[ +1.8682 +3.0805 -3.0824 -3.5499 +3.6292 -4.1494 +6.0196 +8.0361 -8.1501 +10.1722]
2018-05-14 16:10:55,234 - t= +0.1282 d= +723.3875 c_train= +0.1372 c_test= +1.9704 a_train= +0.9550 a_test= +0.6347 diff(a)= -0.0004 time(eighsh)= +68.40 eigs=[ -0.8230 -1.6670 +2.4207 +3.6592 -4.7182 +5.3232 -8.0093 +8.2493 -8.8749 -9.8074]
2018-05-14 16:15:55,891 - eigsh failed: ARPACK error -1: No convergence (501 iterations, 6/10 eigenvectors converged)
2018-05-14 16:15:55,897 - t= +0.1538 d= +834.1293 c_train= +0.1317 c_test= +2.0401 a_train= +0.9589 a_test= +0.6331 diff(a)= -0.0020 time(eighsh)= +285.52 eigs=[]
2018-05-14 16:17:29,893 - t= +0.1795 d= +935.8316 c_train= +0.1220 c_test= +2.1023 a_train= +0.9633 a_test= +0.6322 diff(a)= -0.0029 time(eighsh)= +78.98 eigs=[ -0.0976 -0.3615 -1.0752 +1.1632 -1.2304 +1.5264 -3.0662 +4.7089 -5.6153 +6.9142]
2018-05-14 16:19:12,767 - t= +0.2051 d=+1029.0129 c_train= +0.1166 c_test= +2.1556 a_train= +0.9640 a_test= +0.6331 diff(a)= -0.0020 time(eighsh)= +88.68 eigs=[ +0.6584 +0.6718 -0.8548 +1.1444 -1.4954 +1.6654 -1.7497 +1.8001 -2.3097 +2.6528]
2018-05-14 16:20:33,130 - t= +0.2308 d=+1114.0770 c_train= +0.1128 c_test= +2.2003 a_train= +0.9663 a_test= +0.6342 diff(a)= -0.0009 time(eighsh)= +66.14 eigs=[ +0.3075 +0.3964 -1.2003 -1.2272 +1.9456 +2.0454 +2.3221 -3.5455 -3.8836 +3.9026]
2018-05-14 16:22:05,204 - t= +0.2564 d=+1191.3577 c_train= +0.1072 c_test= +2.2345 a_train= +0.9651 a_test= +0.6375 diff(a)= +0.0024 time(eighsh)= +77.77 eigs=[ +0.1947 -0.3198 +0.5678 +0.8611 +0.9844 +1.5258 +1.9179 -1.9752 +2.0301 -2.6247]
2018-05-14 16:23:14,899 - t= +0.2821 d=+1261.1420 c_train= +0.1044 c_test= +2.2572 a_train= +0.9658 a_test= +0.6403 diff(a)= +0.0052 time(eighsh)= +54.58 eigs=[ +0.9742 -4.7203 +5.5669 -5.7498 +5.7561 +6.3135 -9.0103 +10.6339 -12.2210 -15.7404]
2018-05-14 16:27:20,907 - t= +0.3077 d=+1323.6818 c_train= +0.1019 c_test= +2.2697 a_train= +0.9647 a_test= +0.6397 diff(a)= +0.0046 time(eighsh)= +231.73 eigs=[ +0.2037 +0.2531 +0.3593 +0.3692 -0.3699 +0.4434 +0.5838 +0.5988 -0.7189 +1.0297]
2018-05-14 16:28:21,453 - t= +0.3333 d=+1379.1989 c_train= +0.1057 c_test= +2.2723 a_train= +0.9630 a_test= +0.6401 diff(a)= +0.0050 time(eighsh)= +45.52 eigs=[ +0.0588 -0.7075 +0.9592 -1.7543 +1.9907 -2.4703 -2.5741 +3.5751 -3.8718 +4.0588]
2018-05-14 16:30:16,141 - t= +0.3590 d=+1427.8862 c_train= +0.1101 c_test= +2.2667 a_train= +0.9641 a_test= +0.6408 diff(a)= +0.0057 time(eighsh)= +99.53 eigs=[ +0.5012 -0.6420 +0.7754 -0.8735 -1.1146 +1.8065 -2.3310 +2.6826 -2.9096 +3.6001]
2018-05-14 16:32:58,725 - t= +0.3846 d=+1469.9036 c_train= +0.1094 c_test= +2.2527 a_train= +0.9648 a_test= +0.6422 diff(a)= +0.0071 time(eighsh)= +148.51 eigs=[ -0.3867 -0.4204 +0.4361 -0.7787 -0.8024 +1.1203 +1.1607 +1.4938 -1.7395 -1.7954]
2018-05-14 16:35:11,783 - t= +0.4103 d=+1505.3817 c_train= +0.1172 c_test= +2.2319 a_train= +0.9629 a_test= +0.6426 diff(a)= +0.0075 time(eighsh)= +118.75 eigs=[ +0.0266 +0.3760 -0.6068 +1.0950 -1.4016 +1.4734 -1.7142 -1.7558 +2.0528 -2.1757]
2018-05-14 16:35:53,185 - t= +0.4359 d=+1534.4177 c_train= +0.1261 c_test= +2.2055 a_train= +0.9628 a_test= +0.6440 diff(a)= +0.0089 time(eighsh)= +27.24 eigs=[ +0.0209 -0.4767 -2.9345 -3.1061 -4.1788 -5.9927 +6.6863 +6.9052 +7.9304 -8.0982]
2018-05-14 16:38:14,755 - t= +0.4615 d=+1557.0747 c_train= +0.1310 c_test= +2.1732 a_train= +0.9567 a_test= +0.6452 diff(a)= +0.0101 time(eighsh)= +126.77 eigs=[ -0.3804 -0.8767 +1.2178 +1.5637 +2.5513 -2.8003 +3.7737 -4.0670 -4.8604 +4.9744]
2018-05-14 16:39:20,873 - t= +0.4872 d=+1573.3835 c_train= +0.1363 c_test= +2.1353 a_train= +0.9554 a_test= +0.6459 diff(a)= +0.0108 time(eighsh)= +51.16 eigs=[ -4.6331 +6.5146 +11.7083 -16.0449 +22.8288 +25.7572 +26.5214 -26.7542 -34.6444 -34.7626]
2018-05-14 16:40:24,137 - t= +0.5128 d=+1583.3413 c_train= +0.1469 c_test= +2.0907 a_train= +0.9500 a_test= +0.6428 diff(a)= +0.0077 time(eighsh)= +48.95 eigs=[ -1.0148 -1.4210 -2.1460 +3.3162 -3.6232 +3.6783 +5.3360 -5.9224 -6.6559 +6.8919]
2018-05-14 16:41:35,276 - t= +0.5385 d=+1586.9132 c_train= +0.1600 c_test= +2.0409 a_train= +0.9486 a_test= +0.6417 diff(a)= +0.0066 time(eighsh)= +56.18 eigs=[ +4.0698 +5.2453 -6.1355 +6.2018 -6.8247 -9.6388 +11.6306 -12.8449 -14.1635 +14.5231]
2018-05-14 16:42:56,941 - t= +0.5641 d=+1584.0328 c_train= +0.1753 c_test= +1.9880 a_train= +0.9421 a_test= +0.6398 diff(a)= +0.0047 time(eighsh)= +66.64 eigs=[ -0.1038 -0.3453 +1.8445 +3.3673 +3.5299 -9.0285 -9.9488 -10.2377 +13.4133 +13.4491]
2018-05-14 16:45:30,832 - t= +0.5897 d=+1574.6066 c_train= +0.1886 c_test= +1.9310 a_train= +0.9353 a_test= +0.6390 diff(a)= +0.0039 time(eighsh)= +139.87 eigs=[ +2.3738 +3.6162 +8.0378 -10.3251 +10.8221 -14.8021 -18.5735 -20.3479 +25.4146 +25.8490]
2018-05-14 16:46:53,111 - t= +0.6154 d=+1558.5165 c_train= +0.2080 c_test= +1.8730 a_train= +0.9306 a_test= +0.6401 diff(a)= +0.0050 time(eighsh)= +67.31 eigs=[ +4.2458 -14.1543 +19.7075 -29.0155 +34.0868 +42.6439 -45.4045 -48.8907 -52.5521 -57.6936]
2018-05-14 16:50:34,287 - t= +0.6410 d=+1535.6270 c_train= +0.2196 c_test= +1.8150 a_train= +0.9250 a_test= +0.6408 diff(a)= +0.0057 time(eighsh)= +206.30 eigs=[ +0.1296 -0.1701 -0.3304 +1.0607 +1.2958 -1.5950 +2.1960 -2.8171 -2.9987 -3.7531]
2018-05-14 16:54:07,704 - t= +0.6667 d=+1505.7946 c_train= +0.2462 c_test= +1.7606 a_train= +0.9202 a_test= +0.6416 diff(a)= +0.0065 time(eighsh)= +198.48 eigs=[ +0.1908 +2.6415 +5.0285 -5.6435 +6.0329 -6.2849 +7.0718 +9.6607 -9.6851 +10.5286]
2018-05-14 16:56:36,929 - t= +0.6923 d=+1468.8794 c_train= +0.2731 c_test= +1.7181 a_train= +0.9095 a_test= +0.6355 diff(a)= +0.0004 time(eighsh)= +135.01 eigs=[ -2.1640 +2.6006 -3.7749 +6.1465 -6.7189 -10.0821 -13.4706 +21.8047 -21.8257 +21.9043]
2018-05-14 16:58:17,572 - t= +0.7179 d=+1424.7631 c_train= +0.3024 c_test= +1.6876 a_train= +0.9025 a_test= +0.6278 diff(a)= -0.0073 time(eighsh)= +85.42 eigs=[ -7.3977 -11.3243 -13.4577 +25.9500 +26.0534 +29.1785 +31.2996 +31.9868 +35.5729 -39.2137]
2018-05-14 16:59:45,174 - t= +0.7436 d=+1373.3792 c_train= +0.3572 c_test= +1.6569 a_train= +0.8856 a_test= +0.6221 diff(a)= -0.0130 time(eighsh)= +72.68 eigs=[ -5.7253 -6.5302 -13.6254 -18.1923 +18.7050 -19.7359 +20.5033 +27.2111 +34.3515 -38.2443]
2018-05-14 17:04:57,904 - t= +0.7692 d=+1314.7482 c_train= +0.4119 c_test= +1.6288 a_train= +0.8657 a_test= +0.6162 diff(a)= -0.0189 time(eighsh)= +297.89 eigs=[ -0.0604 +0.1295 +1.7303 +4.2347 -4.3162 +5.4683 +6.9350 -8.1806 +8.9027 -9.1686]
2018-05-14 17:07:16,017 - t= +0.7949 d=+1249.0431 c_train= +0.4739 c_test= +1.6056 a_train= +0.8499 a_test= +0.6107 diff(a)= -0.0244 time(eighsh)= +123.29 eigs=[ -0.6167 -8.6064 +8.8395 +13.7468 -16.5055 -19.4383 -33.6961 -35.9826 +44.8353 +50.4310]
2018-05-14 17:08:34,690 - t= +0.8205 d=+1176.6843 c_train= +0.5364 c_test= +1.5885 a_train= +0.8307 a_test= +0.6067 diff(a)= -0.0284 time(eighsh)= +64.22 eigs=[ +10.8598 -22.7513 +36.6654 +58.0283 -63.5274 +63.6335 -70.9679 -81.4956 +83.2648 +86.0409]
2018-05-14 17:10:39,779 - t= +0.8462 d=+1098.5007 c_train= +0.5869 c_test= +1.5735 a_train= +0.8169 a_test= +0.6022 diff(a)= -0.0329 time(eighsh)= +110.10 eigs=[ +3.1308 -21.0099 -21.6322 +27.8931 +29.7266 +35.9214 -38.8608 +43.2270 +43.8193 -45.4541]
2018-05-14 17:11:55,788 - t= +0.8718 d=+1016.0042 c_train= +0.6015 c_test= +1.5611 a_train= +0.8111 a_test= +0.6025 diff(a)= -0.0326 time(eighsh)= +60.87 eigs=[ +0.4194 +12.0540 +12.7396 -28.2969 -37.7656 +55.9204 +65.9048 +73.1794 +88.4595 -113.6904]
2018-05-14 17:14:07,830 - t= +0.8974 d= +931.8899 c_train= +0.5785 c_test= +1.5508 a_train= +0.8166 a_test= +0.6100 diff(a)= -0.0251 time(eighsh)= +117.14 eigs=[ +0.0179 -1.4984 -3.5962 +10.2257 -11.9235 -12.2377 -16.1551 -18.2132 +22.6913 -23.3197]
2018-05-14 17:18:26,481 - t= +0.9231 d= +850.9781 c_train= +0.5525 c_test= +1.5352 a_train= +0.8218 a_test= +0.6194 diff(a)= -0.0157 time(eighsh)= +244.63 eigs=[ -9.6694 +18.1754 -18.7549 +20.0716 +20.5787 -25.0519 -25.7286 +27.6026 +31.3822 -32.1496]
2018-05-14 17:23:12,560 - t= +0.9487 d= +781.9592 c_train= +0.5092 c_test= +1.5465 a_train= +0.8371 a_test= +0.6234 diff(a)= -0.0117 time(eighsh)= +271.24 eigs=[ -2.6779 +2.8292 -3.1355 -3.3559 -6.4739 -7.2657 +7.7420 +8.1871 -9.3556 -10.8543]
2018-05-14 17:24:33,349 - t= +0.9744 d= +740.0017 c_train= +0.3598 c_test= +1.5874 a_train= +0.8782 a_test= +0.6349 diff(a)= -0.0002 time(eighsh)= +66.23 eigs=[ -6.9634 +9.9304 +14.1463 +14.9010 -20.1633 +26.0078 -35.4327 -37.0877 -45.2165 +46.0140]
2018-05-14 17:29:31,227 - t= +1.0000 d= +747.7407 c_train= +0.1277 c_test= +1.7203 a_train= +0.9659 a_test= +0.6375 diff(a)= +0.0024 time(eighsh)= +283.49 eigs=[ +0.1351 -2.4733 -4.3474 +4.7553 -5.5043 +6.1975 +6.6171 +9.3183 -9.9723 -11.0447]
2018-05-14 17:29:31,234 - bezier 2/10
2018-05-14 17:36:05,802 - t= +0.0000 d= +0.0000 c_train= +0.1414 c_test= +1.6767 a_train= +0.9616 a_test= +0.6351 diff(a)= +0.0000 time(eighsh)= +378.77 eigs=[ -0.5753 +4.3272 -5.9734 +7.1092 +8.0163 -10.6959 -11.0052 +11.9212 -12.0522 +12.5781]
2018-05-14 17:40:43,070 - t= +0.0256 d= +171.9892 c_train= +0.1963 c_test= +1.6783 a_train= +0.9386 a_test= +0.6408 diff(a)= +0.0057 time(eighsh)= +262.14 eigs=[ -0.0781 +0.1558 +0.9545 +1.2853 -2.3386 -2.9502 -3.3384 +3.5929 +3.7339 -3.9181]
2018-05-14 17:43:19,626 - t= +0.0513 d= +328.6735 c_train= +0.1895 c_test= +1.7442 a_train= +0.9420 a_test= +0.6366 diff(a)= +0.0015 time(eighsh)= +142.18 eigs=[ -0.3097 -0.8678 -1.2966 +1.7923 -2.7915 +3.0864 -3.4917 -3.5880 +3.9660 +4.1097]
2018-05-14 17:44:22,690 - t= +0.0769 d= +471.7764 c_train= +0.1671 c_test= +1.8185 a_train= +0.9486 a_test= +0.6349 diff(a)= -0.0002 time(eighsh)= +48.68 eigs=[ +0.2140 +0.3005 -0.9900 +2.8347 -3.4187 +4.1624 +4.2643 +4.3131 -4.9061 -5.3685]
2018-05-14 17:48:19,558 - t= +0.1026 d= +602.9160 c_train= +0.1502 c_test= +1.8956 a_train= +0.9513 a_test= +0.6336 diff(a)= -0.0015 time(eighsh)= +222.70 eigs=[ -0.0638 -0.4241 -0.5503 +0.7163 +0.7653 -0.8759 +1.0272 -1.3538 +1.3811 -1.4903]
2018-05-14 17:50:03,392 - t= +0.1282 d= +723.3875 c_train= +0.1367 c_test= +1.9704 a_train= +0.9546 a_test= +0.6347 diff(a)= -0.0004 time(eighsh)= +89.65 eigs=[ -0.5761 +0.8323 +2.4516 -2.5620 +2.6281 -3.7930 +4.4519 +4.5264 -5.3750 +5.4565]
2018-05-14 17:51:22,321 - t= +0.1538 d= +834.1293 c_train= +0.1286 c_test= +2.0401 a_train= +0.9596 a_test= +0.6331 diff(a)= -0.0020 time(eighsh)= +63.85 eigs=[ -0.1027 -0.8307 +2.0986 -2.7163 +2.7895 -3.3941 -5.2152 +5.3106 +6.5420 -6.6147]
2018-05-14 18:03:58,848 - eigsh failed: ARPACK error -1: No convergence (501 iterations, 6/10 eigenvectors converged)
2018-05-14 18:03:58,852 - t= +0.1795 d= +935.8316 c_train= +0.1223 c_test= +2.1023 a_train= +0.9596 a_test= +0.6322 diff(a)= -0.0029 time(eighsh)= +741.88 eigs=[]
2018-05-14 18:05:12,544 - t= +0.2051 d=+1029.0129 c_train= +0.1185 c_test= +2.1556 a_train= +0.9620 a_test= +0.6331 diff(a)= -0.0020 time(eighsh)= +58.70 eigs=[ +0.0785 +0.0889 +0.5418 -1.0347 +2.8797 -3.5560 +4.8068 -5.3483 +5.5154 +5.7277]
2018-05-14 18:06:47,561 - t= +0.2308 d=+1114.0770 c_train= +0.1135 c_test= +2.2003 a_train= +0.9651 a_test= +0.6342 diff(a)= -0.0009 time(eighsh)= +80.07 eigs=[ +1.0574 -1.7637 -1.9226 +1.9673 -2.8332 -3.1604 -3.3506 -3.6596 +4.2706 -4.4877]
2018-05-14 18:08:55,068 - t= +0.2564 d=+1191.3577 c_train= +0.1066 c_test= +2.2345 a_train= +0.9643 a_test= +0.6375 diff(a)= +0.0024 time(eighsh)= +112.58 eigs=[ +0.0223 -0.0263 -0.1904 -0.5096 +0.5613 +0.9406 +1.0308 +1.1156 -1.2951 -1.3397]
2018-05-14 18:09:53,371 - t= +0.2821 d=+1261.1420 c_train= +0.1073 c_test= +2.2572 a_train= +0.9646 a_test= +0.6403 diff(a)= +0.0052 time(eighsh)= +43.36 eigs=[ +0.4669 +1.7830 +3.1179 +3.3397 -4.1060 +4.7260 +5.2838 +5.9176 -8.0999 +10.8994]
2018-05-14 18:14:10,565 - t= +0.3077 d=+1323.6818 c_train= +0.1076 c_test= +2.2697 a_train= +0.9659 a_test= +0.6397 diff(a)= +0.0046 time(eighsh)= +242.77 eigs=[ +0.1368 -0.2661 +0.2949 -0.4410 +0.5007 -0.5157 +0.6830 -0.7676 -0.8167 +0.8648]
2018-05-14 18:15:01,023 - t= +0.3333 d=+1379.1989 c_train= +0.1040 c_test= +2.2723 a_train= +0.9656 a_test= +0.6401 diff(a)= +0.0050 time(eighsh)= +35.57 eigs=[ +0.1247 -0.4580 -0.6376 +0.7699 +1.8577 -2.7028 +3.4695 -3.4727 -3.7934 -4.3570]
2018-05-14 18:17:50,249 - t= +0.3590 d=+1427.8862 c_train= +0.1065 c_test= +2.2667 a_train= +0.9654 a_test= +0.6408 diff(a)= +0.0057 time(eighsh)= +154.37 eigs=[ -0.4196 -0.5582 +0.9918 -2.3171 -2.9617 -3.2824 +4.4923 +5.0948 +5.4349 +5.6700]
2018-05-14 18:24:20,933 - t= +0.3846 d=+1469.9036 c_train= +0.1089 c_test= +2.2527 a_train= +0.9631 a_test= +0.6422 diff(a)= +0.0071 time(eighsh)= +375.72 eigs=[ -0.0617 -0.2359 -0.2747 +0.5762 -0.7569 -0.8212 -0.8303 +0.8784 -1.0039 +1.2199]
2018-05-14 18:27:00,321 - t= +0.4103 d=+1505.3817 c_train= +0.1115 c_test= +2.2319 a_train= +0.9617 a_test= +0.6426 diff(a)= +0.0075 time(eighsh)= +144.72 eigs=[ +0.1764 +0.5675 +0.6764 +1.3626 -1.6448 -1.7533 -1.8543 +2.2357 +2.3351 +2.6982]
2018-05-14 18:28:42,304 - t= +0.4359 d=+1534.4177 c_train= +0.1172 c_test= +2.2055 a_train= +0.9567 a_test= +0.6440 diff(a)= +0.0089 time(eighsh)= +87.08 eigs=[ +0.0613 -0.0686 +0.4541 +0.7841 -1.7825 +3.2984 +3.6576 +4.2129 +4.9228 +5.3696]
2018-05-14 18:30:05,561 - t= +0.4615 d=+1557.0747 c_train= +0.1266 c_test= +2.1732 a_train= +0.9566 a_test= +0.6452 diff(a)= +0.0101 time(eighsh)= +68.97 eigs=[ -0.3152 -0.4311 -0.5947 +0.9946 -1.7194 +2.2211 -3.1894 +4.4770 -4.8037 -4.9210]
2018-05-14 18:31:15,114 - t= +0.4872 d=+1573.3835 c_train= +0.1368 c_test= +2.1353 a_train= +0.9523 a_test= +0.6459 diff(a)= +0.0108 time(eighsh)= +54.93 eigs=[ -1.7025 +2.1914 -3.6251 +4.8041 -4.8814 +9.0728 -9.2983 -10.5811 -12.0455 +14.7276]
2018-05-14 18:32:38,240 - t= +0.5128 d=+1583.3413 c_train= +0.1457 c_test= +2.0907 a_train= +0.9494 a_test= +0.6428 diff(a)= +0.0077 time(eighsh)= +68.39 eigs=[ -0.0040 +0.2714 +0.6960 -2.0647 -3.9402 +4.7036 +4.8381 +5.7795 -6.6450 +8.9772]
2018-05-14 18:38:00,828 - t= +0.5385 d=+1586.9132 c_train= +0.1605 c_test= +2.0409 a_train= +0.9459 a_test= +0.6417 diff(a)= +0.0066 time(eighsh)= +308.58 eigs=[ -0.3052 +0.7580 +3.7033 +5.0641 +5.2846 +6.8768 -7.8659 +10.5607 +11.0078 +11.0154]
2018-05-14 18:39:16,480 - t= +0.5641 d=+1584.0328 c_train= +0.1803 c_test= +1.9880 a_train= +0.9425 a_test= +0.6398 diff(a)= +0.0047 time(eighsh)= +60.64 eigs=[ -0.1482 +0.2710 -1.5453 -1.7880 -2.4292 +4.6889 -5.6876 +6.4045 +7.0163 -7.8721]
2018-05-14 18:40:35,182 - t= +0.5897 d=+1574.6066 c_train= +0.1885 c_test= +1.9310 a_train= +0.9384 a_test= +0.6390 diff(a)= +0.0039 time(eighsh)= +63.79 eigs=[ -3.3402 -3.8080 +6.6607 -7.7800 -10.3074 -13.2136 -18.3093 +19.4115 +26.2711 -29.8674]
2018-05-14 18:43:30,004 - t= +0.6154 d=+1558.5165 c_train= +0.2037 c_test= +1.8730 a_train= +0.9314 a_test= +0.6401 diff(a)= +0.0050 time(eighsh)= +160.50 eigs=[ +0.3113 +0.3619 +1.2814 +5.6180 +8.3982 -8.6680 -8.8816 +10.3089 +10.4779 +14.2614]
2018-05-14 18:46:17,518 - t= +0.6410 d=+1535.6270 c_train= +0.2272 c_test= +1.8150 a_train= +0.9261 a_test= +0.6408 diff(a)= +0.0057 time(eighsh)= +153.19 eigs=[ +0.0811 +0.6389 -1.2204 -2.4743 +3.1266 +3.4416 -4.1087 -5.6269 -6.2963 -7.4163]
2018-05-14 18:48:06,857 - t= +0.6667 d=+1505.7946 c_train= +0.2413 c_test= +1.7606 a_train= +0.9186 a_test= +0.6416 diff(a)= +0.0065 time(eighsh)= +94.58 eigs=[ +0.0274 -5.7080 -6.3703 -9.2361 -9.4741 +11.1099 -11.4041 +12.5913 +15.3388 -16.5769]
2018-05-14 18:52:22,308 - t= +0.6923 d=+1468.8794 c_train= +0.2679 c_test= +1.7181 a_train= +0.9086 a_test= +0.6355 diff(a)= +0.0004 time(eighsh)= +240.93 eigs=[ +0.0752 -0.1001 +0.5257 +1.6303 +2.0410 -2.2534 -2.6507 -2.8878 -5.4915 -7.7215]
2018-05-14 18:54:22,064 - t= +0.7179 d=+1424.7631 c_train= +0.3110 c_test= +1.6876 a_train= +0.8967 a_test= +0.6278 diff(a)= -0.0073 time(eighsh)= +104.82 eigs=[ -5.5340 +6.5347 +11.2519 +11.9759 -14.4678 +15.7827 -19.7128 -24.3877 +25.9456 +32.6090]
2018-05-14 18:55:43,413 - t= +0.7436 d=+1373.3792 c_train= +0.3617 c_test= +1.6569 a_train= +0.8862 a_test= +0.6221 diff(a)= -0.0130 time(eighsh)= +66.39 eigs=[ +6.9843 -17.1909 +18.1659 +20.3105 -21.6573 +21.8727 -33.6133 +37.3400 +40.2417 +60.8207]
2018-05-14 19:00:25,996 - t= +0.7692 d=+1314.7482 c_train= +0.4056 c_test= +1.6288 a_train= +0.8700 a_test= +0.6162 diff(a)= -0.0189 time(eighsh)= +267.97 eigs=[ -2.0077 -5.4888 +5.7806 -6.8669 +7.2032 -7.7336 +11.1610 -11.1746 -11.8526 -12.3626]
2018-05-14 19:02:12,617 - t= +0.7949 d=+1249.0431 c_train= +0.4753 c_test= +1.6056 a_train= +0.8534 a_test= +0.6107 diff(a)= -0.0244 time(eighsh)= +92.15 eigs=[ -1.1601 -10.1379 -14.0509 +15.3668 -15.7366 +20.9718 +29.7256 -31.3240 +37.7955 -41.5350]
2018-05-14 19:04:12,533 - t= +0.8205 d=+1176.6843 c_train= +0.5349 c_test= +1.5885 a_train= +0.8324 a_test= +0.6067 diff(a)= -0.0284 time(eighsh)= +105.11 eigs=[ -19.2095 +33.1850 -35.7945 +41.2494 -44.6509 +49.2671 +55.6142 +56.9168 -59.5450 -60.5163]
2018-05-14 19:06:02,941 - t= +0.8462 d=+1098.5007 c_train= +0.5809 c_test= +1.5735 a_train= +0.8154 a_test= +0.6022 diff(a)= -0.0329 time(eighsh)= +95.48 eigs=[ -3.4682 +5.2950 +6.6409 -6.9429 -7.0874 +11.3352 -19.2252 -29.8228 -31.3787 -42.8596]
2018-05-14 19:08:29,266 - t= +0.8718 d=+1016.0042 c_train= +0.6099 c_test= +1.5611 a_train= +0.8151 a_test= +0.6025 diff(a)= -0.0326 time(eighsh)= +131.45 eigs=[ -3.4990 +4.9457 +15.9433 -25.6476 +45.7351 +69.0086 -73.5400 +74.0743 -109.3401 -125.0951]
2018-05-14 19:09:46,542 - t= +0.8974 d= +931.8899 c_train= +0.5949 c_test= +1.5508 a_train= +0.8154 a_test= +0.6100 diff(a)= -0.0251 time(eighsh)= +62.76 eigs=[ +4.9708 -5.2230 +14.8172 +35.1744 -43.2366 -45.1209 +48.7808 -54.2782 +62.8271 -64.5238]
2018-05-14 19:21:13,362 - t= +0.9231 d= +850.9781 c_train= +0.5620 c_test= +1.5352 a_train= +0.8234 a_test= +0.6194 diff(a)= -0.0157 time(eighsh)= +671.98 eigs=[ +0.8143 -2.2023 +2.5147 -5.7661 -5.8663 -7.7267 -7.7862 +10.8555 +11.0122 -13.7922]
2018-05-14 19:24:14,548 - t= +0.9487 d= +781.9592 c_train= +0.5210 c_test= +1.5465 a_train= +0.8354 a_test= +0.6234 diff(a)= -0.0117 time(eighsh)= +166.80 eigs=[ +2.5552 -3.1029 -3.6271 -3.6922 +4.8259 +5.9392 -10.1189 -11.3925 +11.8906 -11.9453]
2018-05-14 19:26:07,189 - t= +0.9744 d= +740.0017 c_train= +0.3636 c_test= +1.5874 a_train= +0.8782 a_test= +0.6349 diff(a)= -0.0002 time(eighsh)= +98.02 eigs=[ +4.7632 -4.8204 -5.0015 +8.8329 +10.4285 -14.7596 +19.3823 +20.3206 -22.2046 +22.9267]
2018-05-14 19:31:56,075 - t= +1.0000 d= +747.7407 c_train= +0.1273 c_test= +1.7203 a_train= +0.9641 a_test= +0.6375 diff(a)= +0.0024 time(eighsh)= +334.75 eigs=[ +3.1724 +3.7362 -4.2418 +5.4058 +5.7001 -6.9677 +8.1767 +8.8673 +10.0063 +10.1000]
2018-05-14 19:31:56,075 - bezier 3/10
2018-05-14 19:35:26,205 - t= +0.0000 d= +0.0000 c_train= +0.1408 c_test= +1.6767 a_train= +0.9609 a_test= +0.6351 diff(a)= +0.0000 time(eighsh)= +193.43 eigs=[ +0.7808 -1.5078 +2.1957 -2.4284 +7.4719 -10.5527 +18.0809 -18.9684 +19.2307 -20.1815]
2018-05-14 19:38:05,645 - t= +0.0256 d= +171.9892 c_train= +0.1900 c_test= +1.6783 a_train= +0.9414 a_test= +0.6408 diff(a)= +0.0057 time(eighsh)= +145.16 eigs=[ -0.2599 +0.6982 +1.1633 -3.4465 -4.4732 -7.1907 +7.8110 -8.1048 +8.4918 +8.8679]
2018-05-14 19:40:57,055 - t= +0.0513 d= +328.6735 c_train= +0.1860 c_test= +1.7442 a_train= +0.9406 a_test= +0.6366 diff(a)= +0.0015 time(eighsh)= +156.73 eigs=[ -0.1666 -1.0388 +1.3485 -1.3931 +2.0871 +2.3012 -2.6705 +3.0357 -3.7124 +3.7191]
2018-05-14 19:42:17,996 - t= +0.0769 d= +471.7764 c_train= +0.1719 c_test= +1.8185 a_train= +0.9473 a_test= +0.6349 diff(a)= -0.0002 time(eighsh)= +66.02 eigs=[ +0.2354 -1.0664 +1.5691 +2.2764 -2.9656 -3.4991 +5.0504 +6.6913 +7.4718 +7.6224]
2018-05-14 19:44:06,258 - t= +0.1026 d= +602.9160 c_train= +0.1555 c_test= +1.8956 a_train= +0.9522 a_test= +0.6336 diff(a)= -0.0015 time(eighsh)= +93.75 eigs=[ +0.0421 -0.0527 -0.2460 +0.6653 +0.8722 -1.0319 +1.2723 -1.3588 +2.9977 -3.0722]
2018-05-14 19:47:46,899 - t= +0.1282 d= +723.3875 c_train= +0.1376 c_test= +1.9704 a_train= +0.9587 a_test= +0.6347 diff(a)= -0.0004 time(eighsh)= +206.23 eigs=[ +0.6040 -0.7451 +0.8133 -0.9982 -1.7713 +1.8585 +2.0616 +2.1594 +2.3064 -2.6134]
2018-05-14 19:49:03,600 - t= +0.1538 d= +834.1293 c_train= +0.1277 c_test= +2.0401 a_train= +0.9583 a_test= +0.6331 diff(a)= -0.0020 time(eighsh)= +62.21 eigs=[ +1.0683 -1.6377 -1.7731 +2.1891 +3.0315 +5.9770 -5.9856 +6.9833 -7.4191 +7.9995]
2018-05-14 19:50:26,698 - t= +0.1795 d= +935.8316 c_train= +0.1217 c_test= +2.1023 a_train= +0.9629 a_test= +0.6322 diff(a)= -0.0029 time(eighsh)= +68.57 eigs=[ -0.3516 +1.0458 +3.3127 -3.5569 +5.1217 +6.0948 +7.7204 +7.8613 -8.0371 -10.4938]
2018-05-14 19:52:52,719 - t= +0.2051 d=+1029.0129 c_train= +0.1134 c_test= +2.1556 a_train= +0.9624 a_test= +0.6331 diff(a)= -0.0020 time(eighsh)= +131.28 eigs=[ -0.0762 -1.0014 +1.2830 -1.6398 +1.6716 +2.0496 +2.2467 +2.8205 -2.8233 -2.8571]
2018-05-14 19:54:57,047 - t= +0.2308 d=+1114.0770 c_train= +0.1120 c_test= +2.2003 a_train= +0.9632 a_test= +0.6342 diff(a)= -0.0009 time(eighsh)= +109.61 eigs=[ +0.1423 -0.3603 +0.3695 +0.6692 +0.7818 +0.7945 +0.8870 -0.9293 +1.2646 +2.0196]
2018-05-14 19:57:48,344 - t= +0.2564 d=+1191.3577 c_train= +0.1074 c_test= +2.2345 a_train= +0.9639 a_test= +0.6375 diff(a)= +0.0024 time(eighsh)= +156.93 eigs=[ -0.0235 -0.4439 -0.4942 +0.6672 +1.0117 +1.0733 +1.1451 +1.3426 -1.4253 -1.7252]
2018-05-14 20:02:20,422 - t= +0.2821 d=+1261.1420 c_train= +0.1051 c_test= +2.2572 a_train= +0.9655 a_test= +0.6403 diff(a)= +0.0052 time(eighsh)= +257.51 eigs=[ -0.7750 +2.1299 -2.3562 -3.2180 -3.6432 -5.9588 -6.7973 +7.5560 +8.3618 +11.2763]
2018-05-14 20:08:01,519 - t= +0.3077 d=+1323.6818 c_train= +0.1065 c_test= +2.2697 a_train= +0.9665 a_test= +0.6397 diff(a)= +0.0046 time(eighsh)= +326.67 eigs=[ -0.1959 +0.3053 -0.3127 -0.3222 +0.3954 -0.4377 -0.4796 -0.4850 -0.5689 -0.6132]
2018-05-14 20:09:01,496 - t= +0.3333 d=+1379.1989 c_train= +0.1064 c_test= +2.2723 a_train= +0.9653 a_test= +0.6401 diff(a)= +0.0050 time(eighsh)= +45.76 eigs=[ +0.9261 -1.7988 +2.0907 -3.0896 -5.2400 +5.4868 -5.5078 -5.6459 -6.3509 +7.4949]
2018-05-14 20:10:34,469 - t= +0.3590 d=+1427.8862 c_train= +0.1082 c_test= +2.2667 a_train= +0.9640 a_test= +0.6408 diff(a)= +0.0057 time(eighsh)= +78.52 eigs=[ -0.2964 -0.4390 -1.9847 -2.1429 -2.3970 +3.1912 +3.5028 +3.5835 +6.1146 -7.7109]
2018-05-14 20:13:12,812 - t= +0.3846 d=+1469.9036 c_train= +0.1100 c_test= +2.2527 a_train= +0.9623 a_test= +0.6422 diff(a)= +0.0071 time(eighsh)= +143.86 eigs=[ -0.3620 -0.5178 -0.5809 +0.8383 +0.8674 +0.9867 -0.9895 +1.2315 -1.2518 +1.3154]
2018-05-14 20:15:56,028 - t= +0.4103 d=+1505.3817 c_train= +0.1117 c_test= +2.2319 a_train= +0.9618 a_test= +0.6426 diff(a)= +0.0075 time(eighsh)= +148.35 eigs=[ +0.1614 +0.4157 -0.6028 +0.7033 +0.8878 +1.1174 -1.6526 +1.7442 +1.8798 +1.9649]
2018-05-14 20:17:27,228 - t= +0.4359 d=+1534.4177 c_train= +0.1198 c_test= +2.2055 a_train= +0.9588 a_test= +0.6440 diff(a)= +0.0089 time(eighsh)= +76.68 eigs=[ -0.1220 -0.4842 +0.5178 -0.6932 +0.7145 -0.9812 +1.5758 +2.8385 +2.9774 +2.9910]
2018-05-14 20:18:22,952 - t= +0.4615 d=+1557.0747 c_train= +0.1319 c_test= +2.1732 a_train= +0.9577 a_test= +0.6452 diff(a)= +0.0101 time(eighsh)= +40.72 eigs=[ -1.2070 -1.6190 +2.4542 +2.6023 +3.2527 +5.3781 -5.7758 -7.0586 -7.7262 +8.3143]
2018-05-14 20:19:04,684 - t= +0.4872 d=+1573.3835 c_train= +0.1353 c_test= +2.1353 a_train= +0.9546 a_test= +0.6459 diff(a)= +0.0108 time(eighsh)= +27.28 eigs=[ -4.3064 +4.8014 -9.0484 -11.1347 -18.1393 -24.0798 +26.8480 +37.0640 +40.0074 -42.2651]
2018-05-14 20:29:40,743 - t= +0.5128 d=+1583.3413 c_train= +0.1471 c_test= +2.0907 a_train= +0.9530 a_test= +0.6428 diff(a)= +0.0077 time(eighsh)= +621.71 eigs=[ -0.6823 -1.4727 -1.7620 +2.2042 +2.9726 -3.4625 -4.4022 +4.5687 -5.1992 -5.2470]
2018-05-14 20:30:48,010 - t= +0.5385 d=+1586.9132 c_train= +0.1630 c_test= +2.0409 a_train= +0.9461 a_test= +0.6417 diff(a)= +0.0066 time(eighsh)= +52.58 eigs=[ +3.9036 +3.9194 -4.2337 -6.4815 -8.7612 -11.1585 -13.3888 +15.1741 -16.5059 +17.0927]
2018-05-14 20:35:52,851 - t= +0.5641 d=+1584.0328 c_train= +0.1743 c_test= +1.9880 a_train= +0.9431 a_test= +0.6398 diff(a)= +0.0047 time(eighsh)= +290.38 eigs=[ +0.2615 -0.6140 -1.1995 -3.6957 -5.2229 -5.4018 +5.4684 -5.4854 +5.7776 -6.8042]
2018-05-14 20:37:12,014 - t= +0.5897 d=+1574.6066 c_train= +0.1924 c_test= +1.9310 a_train= +0.9356 a_test= +0.6390 diff(a)= +0.0039 time(eighsh)= +64.84 eigs=[ -3.3931 -3.9711 -6.2967 -7.7910 +9.3580 -10.0634 -18.0575 +21.6902 +23.0166 +23.1495]
2018-05-14 20:39:41,235 - t= +0.6154 d=+1558.5165 c_train= +0.2050 c_test= +1.8730 a_train= +0.9334 a_test= +0.6401 diff(a)= +0.0050 time(eighsh)= +134.68 eigs=[ -0.3620 +0.6121 +2.9939 -3.4431 +8.9188 -15.8946 -17.3454 -18.6554 -21.0145 +24.6937]
2018-05-14 20:42:51,368 - t= +0.6410 d=+1535.6270 c_train= +0.2258 c_test= +1.8150 a_train= +0.9261 a_test= +0.6408 diff(a)= +0.0057 time(eighsh)= +175.14 eigs=[ -0.0520 +0.2214 -0.2806 -0.4611 -1.6001 -3.1059 -3.3954 -4.1973 +5.3748 -5.4089]
2018-05-14 20:44:24,081 - t= +0.6667 d=+1505.7946 c_train= +0.2432 c_test= +1.7606 a_train= +0.9173 a_test= +0.6416 diff(a)= +0.0065 time(eighsh)= +77.94 eigs=[ -1.7502 +4.9108 -6.5194 +6.6619 +9.4065 +10.3589 -10.8962 -13.8542 +14.2792 -14.3972]
2018-05-14 20:46:17,135 - t= +0.6923 d=+1468.8794 c_train= +0.2685 c_test= +1.7181 a_train= +0.9121 a_test= +0.6355 diff(a)= +0.0004 time(eighsh)= +98.43 eigs=[ +0.1355 +3.7184 +8.3509 -16.7477 -17.9719 +17.9823 -22.7004 -25.3238 -27.4957 -29.4312]
2018-05-14 20:48:18,150 - t= +0.7179 d=+1424.7631 c_train= +0.3072 c_test= +1.6876 a_train= +0.8985 a_test= +0.6278 diff(a)= -0.0073 time(eighsh)= +106.72 eigs=[ -20.2509 +23.7980 -29.9472 +41.8627 -50.3271 -60.6189 +60.8513 -62.8645 +70.3452 -77.7124]
2018-05-14 20:49:13,637 - t= +0.7436 d=+1373.3792 c_train= +0.3506 c_test= +1.6569 a_train= +0.8870 a_test= +0.6221 diff(a)= -0.0130 time(eighsh)= +41.09 eigs=[ -0.0729 -24.6998 +39.6339 -47.2177 +55.3854 +61.2186 -74.8262 +89.5135 -101.1711 +114.0630]
2018-05-14 20:53:07,607 - t= +0.7692 d=+1314.7482 c_train= +0.3988 c_test= +1.6288 a_train= +0.8652 a_test= +0.6162 diff(a)= -0.0189 time(eighsh)= +219.04 eigs=[ +1.2667 +2.2644 +3.1343 -3.3847 +5.8547 +6.8512 -9.4467 +11.8485 -12.9296 -14.6737]
2018-05-14 20:54:39,300 - t= +0.7949 d=+1249.0431 c_train= +0.4826 c_test= +1.6056 a_train= +0.8470 a_test= +0.6107 diff(a)= -0.0244 time(eighsh)= +77.16 eigs=[ -0.4264 +4.6605 -10.6925 +12.5539 -18.2513 +26.1596 -31.8873 -35.9871 +36.4957 +39.5312]
2018-05-14 20:56:55,827 - t= +0.8205 d=+1176.6843 c_train= +0.5254 c_test= +1.5885 a_train= +0.8274 a_test= +0.6067 diff(a)= -0.0284 time(eighsh)= +122.11 eigs=[ +12.3195 +19.9849 +22.0030 +31.8964 -37.3435 +48.3619 +50.5138 -51.9685 +63.3710 -65.1559]
2018-05-14 20:59:19,779 - t= +0.8462 d=+1098.5007 c_train= +0.5856 c_test= +1.5735 a_train= +0.8135 a_test= +0.6022 diff(a)= -0.0329 time(eighsh)= +129.77 eigs=[ +3.5190 -5.1589 +6.5904 -6.8461 +9.9691 -12.4956 +14.3972 +18.7685 +31.1083 -31.9629]
2018-05-14 21:00:50,269 - t= +0.8718 d=+1016.0042 c_train= +0.6024 c_test= +1.5611 a_train= +0.8075 a_test= +0.6025 diff(a)= -0.0326 time(eighsh)= +75.55 eigs=[ +6.1842 +8.0935 -16.3448 +17.9339 -25.6867 +26.1831 -75.2209 -94.6597 +98.2162 +104.5101]
2018-05-14 21:02:26,248 - t= +0.8974 d= +931.8899 c_train= +0.5920 c_test= +1.5508 a_train= +0.8133 a_test= +0.6100 diff(a)= -0.0251 time(eighsh)= +81.14 eigs=[ +6.9406 -11.0151 +18.0278 +28.8248 -42.7540 -48.7897 -53.6710 +56.1042 -56.1888 +66.3027]
2018-05-14 21:04:49,711 - t= +0.9231 d= +850.9781 c_train= +0.5631 c_test= +1.5352 a_train= +0.8255 a_test= +0.6194 diff(a)= -0.0157 time(eighsh)= +128.76 eigs=[ -0.4286 -1.1602 +5.3636 -8.5572 +12.3778 -14.3283 +15.9412 -23.6305 -27.5720 +27.6428]
2018-05-14 21:07:17,599 - t= +0.9487 d= +781.9592 c_train= +0.5168 c_test= +1.5465 a_train= +0.8396 a_test= +0.6234 diff(a)= -0.0117 time(eighsh)= +133.46 eigs=[ +1.0367 -1.2367 +4.4464 +4.5317 -8.3269 -10.3359 +11.2050 -11.8050 -12.3430 +15.2196]
2018-05-14 21:10:26,054 - t= +0.9744 d= +740.0017 c_train= +0.3616 c_test= +1.5874 a_train= +0.8779 a_test= +0.6349 diff(a)= -0.0002 time(eighsh)= +173.63 eigs=[ -2.5670 -2.8336 -3.8127 -3.9712 -4.2843 -6.6394 +7.4068 +9.0479 -9.8814 -11.6777]
2018-05-14 21:13:02,578 - t= +1.0000 d= +747.7407 c_train= +0.1273 c_test= +1.7203 a_train= +0.9649 a_test= +0.6375 diff(a)= +0.0024 time(eighsh)= +141.56 eigs=[ +1.9402 -2.4736 -7.8921 +11.7326 +11.9267 +15.7747 -18.7835 +19.5734 -19.5824 -23.4062]
2018-05-14 21:13:02,578 - bezier 4/10
2018-05-14 21:19:00,396 - t= +0.0000 d= +0.0000 c_train= +0.1442 c_test= +1.6767 a_train= +0.9632 a_test= +0.6351 diff(a)= +0.0000 time(eighsh)= +341.23 eigs=[ +0.5680 -1.2523 +2.5449 -4.5533 -7.1118 +9.2614 -10.0841 +13.4221 -14.0982 +14.9456]
2018-05-14 21:24:44,310 - t= +0.0256 d= +171.9892 c_train= +0.1898 c_test= +1.6783 a_train= +0.9403 a_test= +0.6408 diff(a)= +0.0057 time(eighsh)= +328.96 eigs=[ -0.4391 -1.4965 -2.1888 -2.4791 -2.8829 +3.0873 +3.4794 -3.9738 +4.4447 -4.7615]
2018-05-14 21:28:15,774 - t= +0.0513 d= +328.6735 c_train= +0.1886 c_test= +1.7442 a_train= +0.9415 a_test= +0.6366 diff(a)= +0.0015 time(eighsh)= +196.47 eigs=[ +0.2604 -0.8257 -1.0348 +1.4365 -1.6485 +1.7747 -1.9831 -2.7901 +3.1088 +3.3722]
2018-05-14 21:29:12,604 - t= +0.0769 d= +471.7764 c_train= +0.1647 c_test= +1.8185 a_train= +0.9466 a_test= +0.6349 diff(a)= -0.0002 time(eighsh)= +42.02 eigs=[ -0.4851 -1.3638 -1.6955 -2.3747 +3.5106 +3.8718 -4.2766 +4.7427 +5.4878 +5.7650]
2018-05-14 21:31:07,877 - t= +0.1026 d= +602.9160 c_train= +0.1508 c_test= +1.8956 a_train= +0.9507 a_test= +0.6336 diff(a)= -0.0015 time(eighsh)= +100.26 eigs=[ +0.8847 -1.5732 +1.9658 -1.9673 -3.9217 +4.1378 +4.5374 +4.9274 -5.9028 +6.7142]
2018-05-14 21:32:41,203 - t= +0.1282 d= +723.3875 c_train= +0.1389 c_test= +1.9704 a_train= +0.9555 a_test= +0.6347 diff(a)= -0.0004 time(eighsh)= +78.75 eigs=[ -1.0269 +1.0985 -1.8881 -4.1726 +5.7082 +6.6818 -6.8826 +8.0828 -8.2695 -8.4693]
2018-05-14 21:34:00,689 - t= +0.1538 d= +834.1293 c_train= +0.1350 c_test= +2.0401 a_train= +0.9600 a_test= +0.6331 diff(a)= -0.0020 time(eighsh)= +65.11 eigs=[ -0.9347 -1.2579 +1.8273 -2.3836 -4.9332 +5.4344 +6.0589 +7.0562 +9.5045 +12.2471]
2018-05-14 21:35:35,208 - t= +0.1795 d= +935.8316 c_train= +0.1187 c_test= +2.1023 a_train= +0.9604 a_test= +0.6322 diff(a)= -0.0029 time(eighsh)= +79.88 eigs=[ +0.0689 -0.5894 +1.3148 +1.5106 -1.6031 +2.6067 -7.6886 +10.0189 -11.9348 -15.3624]
2018-05-14 21:37:37,378 - t= +0.2051 d=+1029.0129 c_train= +0.1137 c_test= +2.1556 a_train= +0.9615 a_test= +0.6331 diff(a)= -0.0020 time(eighsh)= +107.35 eigs=[ -0.4513 +0.5840 -0.7286 -0.8668 +1.3033 +1.4111 +1.4323 +1.6917 -2.4016 +2.4675]
2018-05-14 21:39:06,373 - t= +0.2308 d=+1114.0770 c_train= +0.1101 c_test= +2.2003 a_train= +0.9663 a_test= +0.6342 diff(a)= -0.0009 time(eighsh)= +74.96 eigs=[ -0.1520 +0.9282 -1.6326 -1.8700 +1.8817 +1.9901 -2.4741 +2.5937 -3.0818 +3.8149]
2018-05-14 21:41:05,789 - t= +0.2564 d=+1191.3577 c_train= +0.1124 c_test= +2.2345 a_train= +0.9641 a_test= +0.6375 diff(a)= +0.0024 time(eighsh)= +104.92 eigs=[ -0.1745 +0.4017 -0.6939 +0.7886 -1.0766 +1.1337 -1.3483 -1.5833 +1.5986 -1.9129]
2018-05-14 21:42:25,930 - t= +0.2821 d=+1261.1420 c_train= +0.1069 c_test= +2.2572 a_train= +0.9661 a_test= +0.6403 diff(a)= +0.0052 time(eighsh)= +65.07 eigs=[ -0.0682 +1.7688 -1.8403 +1.9418 -2.2256 +3.4149 -5.1370 +5.9171 -9.6511 +10.0387]
2018-05-14 21:44:39,856 - t= +0.3077 d=+1323.6818 c_train= +0.1060 c_test= +2.2697 a_train= +0.9639 a_test= +0.6397 diff(a)= +0.0046 time(eighsh)= +119.53 eigs=[ -0.0127 +0.0324 +0.1943 -0.2116 -0.8921 -1.0227 +1.0518 -1.2040 -1.2488 -1.3139]
2018-05-14 21:45:33,966 - t= +0.3333 d=+1379.1989 c_train= +0.1005 c_test= +2.2723 a_train= +0.9683 a_test= +0.6401 diff(a)= +0.0050 time(eighsh)= +39.48 eigs=[ +0.1529 -1.2624 +1.5500 -2.6628 +3.1383 -3.4438 -4.0138 +4.2190 -4.7250 -5.1444]
2018-05-14 21:47:12,944 - t= +0.3590 d=+1427.8862 c_train= +0.1070 c_test= +2.2667 a_train= +0.9653 a_test= +0.6408 diff(a)= +0.0057 time(eighsh)= +82.68 eigs=[ +0.4875 -0.9113 +1.2180 -1.4925 +2.2196 +2.3173 +3.5870 +3.8092 -4.8775 -5.2516]
2018-05-14 21:52:35,752 - t= +0.3846 d=+1469.9036 c_train= +0.1149 c_test= +2.2527 a_train= +0.9652 a_test= +0.6422 diff(a)= +0.0071 time(eighsh)= +307.84 eigs=[ -0.1111 +0.2464 -0.3238 +0.4000 +0.4520 +0.7452 +0.7877 -0.8225 -0.8749 -1.2323]
2018-05-14 21:56:11,627 - t= +0.4103 d=+1505.3817 c_train= +0.1129 c_test= +2.2319 a_train= +0.9614 a_test= +0.6426 diff(a)= +0.0075 time(eighsh)= +201.26 eigs=[ -0.3826 -0.3995 -0.5812 +0.8561 +0.9304 -1.0135 +1.0557 +1.1531 +1.2641 -1.4241]
2018-05-14 21:57:48,831 - t= +0.4359 d=+1534.4177 c_train= +0.1208 c_test= +2.2055 a_train= +0.9597 a_test= +0.6440 diff(a)= +0.0089 time(eighsh)= +82.78 eigs=[ +0.1142 -1.3667 +1.4562 +1.8936 -2.3905 -2.4331 -2.5762 +2.7825 +2.9872 -3.2783]
2018-05-14 21:58:46,584 - t= +0.4615 d=+1557.0747 c_train= +0.1280 c_test= +2.1732 a_train= +0.9587 a_test= +0.6452 diff(a)= +0.0101 time(eighsh)= +42.66 eigs=[ -0.5659 +1.4609 -1.7319 +1.8045 +3.8825 -4.5424 -7.1977 +7.4088 -7.5817 -9.6879]
2018-05-14 21:59:34,867 - t= +0.4872 d=+1573.3835 c_train= +0.1369 c_test= +2.1353 a_train= +0.9532 a_test= +0.6459 diff(a)= +0.0108 time(eighsh)= +33.55 eigs=[ +2.2702 -2.8693 -4.6506 +9.8776 -10.2375 -12.4642 +16.8204 -21.1931 -27.6302 +27.9867]
2018-05-14 22:00:40,098 - t= +0.5128 d=+1583.3413 c_train= +0.1471 c_test= +2.0907 a_train= +0.9515 a_test= +0.6428 diff(a)= +0.0077 time(eighsh)= +50.44 eigs=[ +0.3942 +2.1340 -2.6681 -3.3290 +7.4086 +8.1899 -8.3245 +8.4197 -10.6912 +13.5348]
2018-05-14 22:02:13,444 - t= +0.5385 d=+1586.9132 c_train= +0.1614 c_test= +2.0409 a_train= +0.9448 a_test= +0.6417 diff(a)= +0.0066 time(eighsh)= +78.40 eigs=[ +0.4639 -1.2141 -2.2682 +2.5309 -3.4094 -5.0718 +6.3717 -7.0919 +9.4267 +10.6744]
2018-05-14 22:05:59,661 - t= +0.5641 d=+1584.0328 c_train= +0.1744 c_test= +1.9880 a_train= +0.9454 a_test= +0.6398 diff(a)= +0.0047 time(eighsh)= +211.89 eigs=[ +0.2474 +0.5732 -1.3765 +1.5883 -3.2747 +4.5487 -4.6056 +5.4303 -6.1302 +11.3409]
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment